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Advances in the price, performance, and power consumption of Wi-Fi (IEEE 802.11) tech-
nology have led to the adoption of wireless functionality in diverse consumer electronics.
These trends have enabled an exciting vision of rich wireless applications that combine the
unique features of different devices for a better user experience. To meet the needs of these
applications, a wireless network must be configured well to provide good performance
at the physical layer. But because of wireless technology and usage trends, finding these
configurations is an increasingly challenging problem.

Wireless configuration objectives range from simply choosing the fastest way to encode
data on a single wireless link to the global optimization of many interacting parameters
over multiple sets of communicating devices. As more links are involved, as technology
advances (e.g., the adoption of OFDM and MIMO techniques in Wi-Fi), and as devices
are used in changing wireless channels, the size of the configuration space grows. Thus
algorithms must find good operating points among a growing number of options.

The heart of every configuration algorithm is evaluating of the performance of a wireless
link in a particular operating point. For example, if we know the performance of all three
links between a source, a destination, and a potential relay, we can easily determine whether
or not using the relay will improve aggregate throughput. Unfortunately, the two standard
approaches to this task fall short. One approach uses aggregate signal strength statistics to
estimate performance, but these do not yield accurate predictions of performance. Instead,
the approach used in practice measures performance by actually trying the possible con-
figurations. This procedure takes a long time to converge and hence is ill-suited to large
configuration spaces, multiple devices, or changing channels, all of which are trends today.





As a result, the complexity of practical configuration algorithms is dominated by optimizing
this performance estimation step.

In this thesis, I develop a comprehensive way to rapidly and accurately predict the
performance of every operating point in a large configuration space. I devise a simple but
powerful model that uses a single low-level channel measurement and extrapolates over a
wide configuration space. My work makes the most complex step of today’s configuration
algorithms—estimating the effectiveness of a particular configuration—trivial, achieving
better performance in practice and enabling the practical solution of larger problems.
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Chapter 1

INTRODUCTION

Wireless local area networks are used today to connect devices wirelessly at high rates
in locations such as cafés, shopping malls, corporate offices, and homes. The dominant
technology for these networks is Wi-Fi (IEEE 802.11 [44]), which emerged in 1997 as a way
to connect computers wirelessly to a nearby (within 100 m) Internet “access point” at rates
up to 2 Mbps.

The past fifteen years have seen Wi-Fi technology improve dramatically. Today’s commer-
cial Wi-Fi devices come at low cost, have a small physical footprint, and offer dramatically
increased speeds of up to 600 Mbps in IEEE 802.11n [45]. Wi-Fi is no longer limited to
traditional computing devices such as laptop and desktop computers, but is also being
adopted by consumer electronics such as smartphones, printers, speakers, video cameras,
televisions, and DVD players. An ABI Research report [1] forecast that more than half of the
1 billion Wi-Fi chipsets shipped in 2011 would be used in consumer electronics.

Because of its rapid adoption in a diverse set of devices, Wi-Fi is poised at the heart
of the next networking revolution: The combining of these diverse consumer devices to
build rich applications that leverage each device’s unique features. This stands in sharp
contrast with today’s access point model, in which devices only use wireless connectivity to
interact with the Internet at large and hence the access point, which provides the only point
of contact with the Internet, is a natural point of centralization. To support this shift away
from the access point model, a new protocol called Wi-Fi Direct [122] was standardized in
late 2010 that enables Wi-Fi devices to form networks that better match their applications.
Wi-Fi Direct has seen great uptake: A second ABI Research study [2], conducted in late 2011,
forecast a 50% annual growth rate for Wi-Fi Direct support and predicted that there will be
2 billion Wi-Fi Direct-enabled devices by 2016.

Despite these technology, standardization, and adoption trends aligning to enable future
rich wireless applications, there is one major challenge: The underlying Wi-Fi technologies
and network architectures have become rather complex, and how to configure and control them has
become a significant decision problem that presently lacks a simple, comprehensive solution.

What does it mean to configure a network? In this thesis, I use the term configuration to
describe an assignment of values to the physical-layer parameters of one or more wireless
devices. This includes the choice of operating frequency, transmit power level, transmit rate,
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how many and which antennas are used, and more. A configuration problem is the task of
configuring all of these parameters for one device, for two devices sending together as a
link, or for many devices operating at the same time in a wireless network. Configuration
problems can therefore be defined as search problems with the goal of finding a good
operating point among the parameter space.

The heart of every configuration algorithm is evaluating the performance of a wireless
link in a particular operating point. Consider rate selection, the problem of picking the
fastest way to transmit data on a wireless link. In the first version of 802.11, released in 1997,
the rate selection task consisted of choosing between two modulations to transmit data.
Early algorithms just tried both rates and picked the better one. This worked well through
802.11b and 802.11a/g, because with up to 12 different rates to choose from, “try-it-and
see” algorithms that probed all options, though not perfect, generally sufficed. But trends in
Wi-Fi make this probe-based approach much less effective.

First, the configuration space is growing much larger. One reason is technology trends:
Modern 802.11n devices achieve their fast rates by relying on the ability to send with multi-
ple antennas. This adds another dimension to the search space—how many antennas are
used—and expands the number of rates into the hundreds. The other reason is usage trends:
The device-to-device nature of new networks like Wi-Fi Direct means that coordination
within a network is no longer limited a client and its access point. Instead, configuring the
network requires extensive coordination between pairs and sets of devices in a network,
growing the search space exponentially. Finally, wireless devices are increasingly used in
changing environments. For instance, wireless devices are increasingly used while mobile,
both while walking indoors and in vehicles. This combination of factors means that algo-
rithms to configure the network need to respond faster to match changing channels, while
simultaneously choosing from among more possibilities.

This issue affects all configuration problems, not just rate selection. An example con-
figuration problem for a device-to-device network is choosing a multi-hop path between
a source and destination device, possibly using intermediate devices as relays. One step
in solving this problem involves assessing the performance achievable on each potential
link. This should include taking into account the effect of using different rates, number
and sets of antennas, and even the quality of using the best among multiple operating
channels for each link. This set of parameters results in a very large configuration space,
which proves impractical for probe-based solutions to search because the search will not
converge if the channel conditions change. Instead, past solutions to this subproblem tend
to assume away most dimensions of the configuration space—e.g., by assuming homoge-
neous single-antenna nodes and fixing the entire network to a single bitrate, frequency,
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and transmit power, so that the system need only probe packet delivery for a single rate.
This simplification narrows the space to something feasible to probe, but by eliminating
much of the configuration space from consideration it also likely results in relatively poor
performance.

An alternative approach to probing uses measurements of the wireless channel to
attempt to predict how well an operating point will work. For instance, 802.11 receivers
can measure the total amount of power received from the transmitter. Since using slower
rates generally requires less power than using faster rates, this signal strength measurement
might serve as a useful indicator of whether a particular rate works. However, in practice
this approach does not provide accurate predictions for Wi-Fi links, for fundamental reasons
that I discuss below. Some proposals [55] attempt to train a mapping between signal strength
and rate, but suffer from the same convergence problems as with probing because this
mapping must be updated independently for each configuration point.

To get good performance in future wireless networks, configuration algorithms need to
be able to take into account the entire configuration space. Fundamentally, this requires the
ability to rapidly assess how well each operating point will work. Past solutions indicate that
the probe-based algorithms used until now will not scale to handle these future systems. (My
study in Chapter 7 reinforces this point.) Neither will the approaches based on aggregate
signal strength information that must be trained for each operating point. Instead, Wi-Fi
systems need a way to predict how well an operating point will work without trying it and
without requiring online, per-wireless-link calibration.

In this dissertation, I provide a practical, effective solution to this problem. In particular,
I develop a comprehensive way to inform these complex decision problems using low-level
wireless channel measurements. I devise a simple but powerful model that can predict
the performance of every operating point in the entire configuration space, using only a
small set of measurements and without online training. Because it only uses one or a few
measurements, my model can rapidly update its predictions as the channel changes. My
approach enables algorithms to adjust all parameters and to adapt quickly to changing
conditions, thus enabling the type of configuration algorithms needed to support rich future
wireless networks.

In the rest of this chapter, I first explain the problem in further detail. I then present my
hypothesis and explain my approach to solving this problem. I conclude this chapter by
discussing the contributions of my work and the organization of the rest of this thesis.

1.1 The Problem

As stated above, a major challenge for Wi-Fi networks today is finding a good configuration
in a changing world. To introduce the problem, I present the main configuration problems
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RT

Figure 1.1: A single Wi-Fi link, in which the transmitter T sends data to the receiver R.
No other wireless devices are present.

in these systems, and briefly explain why today’s Wi-Fi solutions are insufficient.

1.1.1 Configuring a Single Link

The most basic wireless network is a single link (Figure 1.1), in which a transmitter sends
data to one receiver, with no other devices present. In this section, I will show that config-
uring a wireless link to work well involves choosing the right operating point in a large
multi-dimensional space.

Perhaps the simplest configuration goal for a wireless link is rate selection: In most cases,
the transmitter should send its data to the receiver using the fastest rate at which it will be
successfully received. Sending data more slowly obviously means the transmission takes
longer. At the same time, sending faster would be inefficient because the data would not be
received, wasting all the airtime and energy consumed during the transmission.

In principle, selecting a rate for a wireless link should be trivial according to the well-
known results of communications theory. Whether a transmission sent with a particular
modulation and coding scheme is received is determined entirely by the amount of power
delivered to the receiver and the noise level present. This factor is quantified in the signal-to-
noise ratio, or SNR. The transmitter need only measure the channel SNR and apply textbook
formulas that can compute the error rates of particular modulations. The fastest rate can
then be easily selected. This approach is described in Figure 1.2(a).

In practice, this approach has never worked for Wi-Fi links. The 802.11 standard defines
a channel metric related to the SNR, called the receive signal strength indicator (RSSI), that
captures the total amount of power in the channel. In most chipsets, RSSI is indeed a
direct measure of the SNR. However, Wi-Fi systems have never used RSSI as more than
a coarse indicator of expected performance. There have simply been too many ways in
which the observed measurements and actual performance fail to match the predictions of
theory. For example, hardware estimates of RSSI can be mis-calibrated, the wireless channel
can vary over packet reception, and it can be corrupted by interference [17, 55, 95]. More
fundamentally, the OFDM and MIMO (see Chapter 2) physical-layer techniques used in
802.11n send independent data on different subchannels with different subchannel SNRs,
so that different bits of the packet can have different SNRs. This means that RSSI, which
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(b) The probe-based approach to rate
selection.

Figure 1.2: Approaches to rate selection.

captures only the average SNR of the signal, is fundamentally not a good indicator of
performance for Wi-Fi.

Since rate selection based on RSSI has never worked for Wi-Fi, practical systems use rate
adaptation algorithms instead [14, 109, 123]. These algorithms, exemplified by Figure 1.2(b),
are guided search schemes that simply test individual rates to see how well they work.
When the loss rate is too high, a lower rate is used; otherwise a higher rate is tested. This
approach works well for slowly varying channels and simple links, since the best setting
will soon be found.

However, remember the Wi-Fi trends discussed earlier: The transmit configuration of a
single Wi-Fi link now includes not just rate, but additional dimensions that take into account
the use of multiple antennas or channel widths, and these devices are increasingly being
used while mobile. Thus algorithms to configure the rates of these links need to respond
more rapidly to match changing conditions, while simultaneously choosing from among
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Parameter Number of values

Rate 8
Number of spatial streams 4
Operating channel ≈30
Channel width 2 (some proposals use many more)
Transmit power level ≈30
Transmit antenna set 6 (for up to 3 streams)
Receive antenna set 6 (for up to 3 streams)

Table 1.1: A list of link configuration parameters.

more possibilities. As a result, probe-based rate adaptation algorithms are becoming less
efficient as these systems become more complex. (I provide results that illustrate this effect
in Chapter 7.)

Thus far, I have described the challenges inherent to choosing an efficient rate to send
data on a wireless link. On its own, this is a hard problem, for which there is a large body
of prior work. In addition, I note that rate is only one of many parameters to optimize
for a Wi-Fi link. For instance, a transmitter may want to trim excess transmit power to
both save energy and reduce interference at nearby receivers. Or a sender might improve a
link by selecting a different subset of its transmit antennas, or by applying beamforming
techniques to better match the signal to the radio channel. Finally, note that these parameters
are not generally independent—changing any one of them can affect the best operating
point for another. For instance, switching the operating frequency (of which there are often
10 to 20 options) can dramatically change the RF channel, and this in turn can affect which
transmit antennas provide the best link, and how the transmitted signal should be shaped
for maximum performance. All of these factors contribute to determining the best way to
configure a link. I provide a brief list of link configuration options in Table 1.1.

In practice, the solution taken by hardware/driver manufacturers (and by researchers)
is to simply ignore most of these dimensions. For instance, only Intel’s iwlwifi driver,
out of all the 802.11n drivers in the Linux kernel driver, adapts the transmit antenna set
in an online manner. Similarly, few access points and no clients adjust transmit power for
ongoing links, instead opting to transmit at the maximum power and guarantee the best
link. There are no known research solutions to these problems either. The solutions work
well enough for wireless access point networks, mostly due to the simple way in which
links are used. Still, these solutions are inefficient for a single link—and in the next section,
we will see that the problem gets even more complicated when performing network-level
configuration of multiple devices that operate in multiple links.
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Figure 1.3: The three key configuration problems in multi-device networks. Left: access
point selection. Center: Multi-hop mesh routing. Right: Spatial reuse.

1.1.2 Configuring a Network of Devices

In this section, I will illustrate how a network of devices has a significantly larger configura-
tion space than a single link. I frame this discussion using the examples in Figure 1.3, which
represent the three key network-level configuration problems that dense wireless networks
like Wi-Fi Direct will have to solve to support device-to-device applications. Depending on
the problem being solved, these configuration problems can have increased complexity that
is linear in the number of devices (AP selection), quadratic (Multi-hop routing), or even
exponential (Spatial reuse).

Access Point Selection

In Figure 1.3, on the left, the client C wishes to join the network offered by the access points
AP1, AP2, and AP3. The access point selection problem is simple: The client should connect to
the access point that provides the link with the best rate. But in order to choose correctly,
the client must accurately evaluate the rate offered by each access point. This in turn means
that the client must have a way to assess its rate to each access point, i.e., a solution to the
rate selection problem described above. Testing all access points using a rate adaptation-like
approach would take too long and would take airtime away from ongoing connections.
In practice clients simply connect the access point with the highest SNR. This heuristic
approach provides only an approximation to the optimal solution, and clients would benefit
from a better way to predict performance over measured wireless channels.

Multi-hop Mesh Routing

In Figure 1.3, in the middle, the source S wishes to send data to the destination D, and
nodesN1 andN2 are also present in the network. The multi-hop routing problem is to choose
the best path through the network by which to deliver data from S to D. In this case, many
paths are available, such as the direct path S–D, the one-hop paths S–N1–D and S–N2–D,
and finally S–N1–N2–D. To evaluate the different paths, we need to know the rate available
on each hop, which in this case would require knowing the rates of six different links. Once
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again, measuring the ground truth rate of each link by testing each configuration would
take too long, and it would add considerable overhead to the network.

Practical work in this area primarily takes one of two approaches. Most of the wireless
mesh research in the past decade avoided this problem by simply ignoring many of the
dimensions of the configuration space. These papers not only used single antenna systems
at fixed transmit powers, but also typically fixed the entire network to a single rate (e.g., [15,
19, 59, 60, 61]). The alternative approach has been to collect statistics about packet delivery
between all pairs of nodes for different rates, and estimate the rate from the measured SNR
for links without sufficient statistics (e.g., [10]). These recent works have exclusively handled
single-antenna 802.11a/b/g networks, and would likely be forced to rely on SNR-based
rate predictions if the underlying links used multiple antennas (as in 802.11n).

Spatial Reuse

The third example, shown in Figure 1.3, is the spatial reuse problem. Here, two independent
links both wish to communicate at the same time and in the same frequency, and so they
need to share the wireless medium. If the links each use half the airtime, then each gets
half of the rate available if they were operating alone. In certain situations, depending
on the placement of the four devices and the amount of interference between the devices,
throughput can be improved by sending concurrently, each using all of the airtime but
maybe using a slightly lower rate.

Once again, deciding which of these two possibilities is better requires the system to
predict the rate on multiple different links. In this case, the rate needs to be predicted not
only for each link in isolation, but also for every possible pair of configurations of the links,
since each transmitting device acts as an interfering signal for the other link. In this case, and
unlike the prior two problems, the size of the resulting configuration space is the product of
the sizes of the space of each individual link. As a result, practical works on spatial reuse for
Wi-Fi [106, 121] have simply fixed the entire network to a single rate during experiments.

1.1.3 Summary

In this section, I first described how that the configuration problems for a single link have
grown dramatically with the switch to 802.11n technology. I then presented the three
key network-level configuration problems for future Wi-Fi networks and explained why
configuration is even a bigger issue for networks than for a single link.

As wireless technology and architectures improve, network configuration algorithms
will have to deal with increasingly large search spaces. To find good operating points if
devices are mobile, we will need to search these large spaces quickly. The heuristic and
adaptation-based approaches used today will not scale to these bigger problems. Instead,
what we need is a way to accurately and rapidly assess the quality of links for all the factors
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Figure 1.4: An Effective SNR-based approach to making application decisions in 802.11n
networks.

mentioned in Section 1.1.1. Then, we can use this process to easily solve joint optimization
problems such as those described in Section 1.1.2.

1.2 Approach

In this thesis, I present a better way to inform Wi-Fi configuration algorithms that can solve
problems like those described in the previous section. The key goal is to use a small number
of measurements about the wireless channel and accurately extrapolate how well many
different physical-layer configurations will work. This will provide a simple, unified, and
fast way to evaluate potential operating points and lead to algorithms that are able to find
good solutions, and do so quickly enough to adapt effectively to changing channels.

Figure 1.4 presents a pictorial summary of my approach. This approach is closely related
to the “theoretical approach” presented in Figure 1.2(a), with a few key differences.

First, a client will measure the channel state information (CSI) for a wireless link, instead of
the RSSI used to compute Packet SNR today. I described above the key problem with RSSI: It
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simply measures the total amount of power in a link, which does not capture the properties
of the different frequency and spatial subchannels that Wi-Fi uses to send independent data.
In contrast, the CSI is a fine-grained measurement that can capture details at the levels of
frequency-selective fading (to understand performance under OFDM) and independent
spatial paths (to understand performance when using MIMO). My thesis will show that the
low-level measurements comprised by the CSI are fine-grained enough to be useful.

The second step uses the main contribution of my thesis: A practical Effective SNR-based
model for wireless packet delivery. My model uses the measured CSI as input, and incorporates
textbook algorithms, ideas from communications theory, as well as some implementation-
specific details to handle a wide variety of channels, hardware devices, and applications.
At the core of my model is the notion of Effective Eb/N0, described in a seminal 1998 paper
by Nanda and Rege [79]. The Effective Eb/N0 is defined in the context of links with faded
subchannels, either time-varying as in Nanda and Rege’s initial work, frequency-selective
as with 802.11n OFDM, or spatially-variant with 802.11n MIMO. The Effective Eb/N0 for a
faded link is a number, defined as the signal-to-noise ratio that describes the power of a flat
link with the same error performance as the link studied. An Effective SNR1 model aims
to compute the Effective SNR using information about the variation of fading across the
different subchannels.

The output of the model is a set of Effective SNR values, one for each studied physical-
layer configuration. These can then be used to compute a predicted set of working physical
layer configurations. For each physical layer configuration in the application space—which
can span the choice of modulation, coding scheme, transmit or receive antenna set, and
more—the model predicts how well that configuration is likely to deliver packets. The
application can then choose among the configurations in a way that optimizes its objective
function. My thesis includes a detailed description of how my model can be used to solve
general classes of wireless network configuration problems, and comprehensive evaluations
for the key applications that arise in device-to-device networks.

1.3 Hypothesis and Contributions

I use this approach to demonstrate my hypothesis that it is possible to rapidly and accurately
predict how well different configurations of MIMO and OFDM wireless links will perform in
practice, using a small set of wireless channel measurements.

My Effective SNR-based model takes as input only a single CSI measurement for a
wireless link, and from this can compute a predicted Effective SNR value for every point in

1 In electrical engineering literature, Eb denotes the energy of a bit and N0 denotes the noise floor, so Eb/N0

is the signal-to-noise ratio of a single bit. In the context of 802.11, in which SNR is derived from RSSI, we use
a slightly different definition of SNR that is not normalized by the number of bits.
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the configuration space of that link. Predictions can be used for rate selection, because they
will indicate the fastest rate to use, but also support concurrent adjustment of factors such
as antenna selection, spatial streams, and transmit power level. For multi-device problems
such as access point or channel selection, my model requires only a single CSI measurement
for each link involved, and thus it can cover a larger configuration space with only a small
set of channel measurements.

The channel state information, like RSSI, is estimated by a receiver using only the pream-
ble of a received packet. This means that unlike packet delivery probes, CSI measurements
can be obtained sending only short packets with no payloads. My single-threaded imple-
mentation can compute all the Effective SNR values for a 3x3-antenna, 20 MHz 802.11n
link in under 4µs, less than a single Wi-Fi packet preamble. The combined process of CSI
measurement and Effective SNR computation is so fast that predictions of how well links
can work can be fed back into control algorithms at near-instantaneous timescales compared
to sending a single data-laden packet. In addition to quick measurement and decision, there
is little information sharing required in order to enable configuration decisions across links.
As a result the network can rapidly respond to varying wireless channels.

I emphasize that my model is practical. To demonstrate my hypothesis, I prototype
my Effective SNR-based model in the context of 802.11n using commodity Intel Wi-Fi
devices. The model is designed to integrate into modern wireless systems, including the
practical implementation aspects of real hardware. Using this practical model and prototype,
I demonstrate that my model can make accurate predictions of packet delivery. Thus my
model provides good performance in practice. My thesis includes an in-depth evaluation of
my model in the context of many wireless link and network configuration problems.

1.3.1 Contributions

To summarize, the contributions of this thesis are as follows:

• I develop a model that accurately predicts the error performance of different MIMO
and OFDM configurations on wireless channels. This model is flexible to support a
wide variety of transmitter and receiver device capabilities, device implementations, and
configuration problems. I present an implementation of my model using a commodity
802.11n wireless device that demonstrates its feasibility in practice and handles the
practical considerations of operation over real links using real, non-ideal hardware. This
includes a detailed experimental evaluation of my system that shows that this model
accurately predicts packet delivery over real 802.11n wireless links in practice.

• I detail how to use this model in a system that can solve a large number and variety of
configuration problems similar to those described in Section 1.1. I evaluate this system
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in the context of a wide variety of 802.11n configuration problems. These evaluations
show that the predictions output by my model lead to good performance in practice, and
exceed the performance of prior probe-based and RSSI-based approaches.

• As part of my thesis I have produced an 802.11n research platform based on open-source
Linux kernel drivers, open-source application code, and commodity Intel 802.11n devices
using closed-source firmware that I customized. I have released this tool publicly, and at
the time of writing it is in use at 23 universities, research labs, and corporations.

1.4 Organization of this Thesis

The rest of this thesis is organized as follows. In Chapter 2, I provide background information
on wireless signals and systems in general, and the IEEE 802.11 standards in particular.
Chapter 3 introduces the problem with using channel measurements to predict wireless
link performance in today’s hardware and using today’s techniques, and it introduces
my Effective SNR-based approach to solving it. In Chapter 4, I develop my Effective SNR
model for 802.11n link performance, and demonstrate its ability to handle a wide range
of transmitter and receiver configurations as well as wireless applications. I describe my
measurement tool and experimental apparatus in Chapter 5. I use this platform to evaluate
the ability of my model to predict error performance over a single link in Chapter 6. Next, I
conduct a detailed study of the model in the context of rate selection for 802.11n in Chapter 7,
and then present brief results for a variety of other configuration problems in Chapter 8. I
place this thesis in the context of related work in Chapter 9. Finally, I present concluding
thoughts along with a brief discussion of the next steps for this work in Chapter 10.
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Chapter 2

BACKGROUND

In this chapter, I establish the fundamentals of wireless communication and the IEEE
802.11 standards to the extent needed to understand my thesis.

2.1 Digital Communication Principles

Electromagnetic (EM) communications, which send data using electromagnetic signals, form
the basis of the technologies I will discuss in this thesis. One key aspect of each wireless
technology is which part of the electromagnetic spectrum it uses, characterized by its carrier
frequency or center frequency, denoted f. A fundamental property of radio waves is that
the frequency of a wave determines its wavelength λ according to the relationship c = fλ,
where c is the speed of light. IEEE 802.11 networks typically use EM signals with a carrier
frequency in the range of 2.4 GHz and 5 GHz and corresponding wavelengths of about
12 cm and 6 cm.

Data transmission using EM signals works by modulating a pure sine wave with fre-
quency f, i.e. by transforming the sine wave to reflect the underlying data. The simplest
modulation scheme might be to turn the sine wave on or off depending on whether the bit
to be transmitted is a 1 or a 0. The rate at which the transmitter varies the signal—in this
example, the rate the sine wave is turned on or off—is called the symbol rate, and determines
the bandwidth of the channel Bmeasured in Hertz (Hz).

The amplitude of the sine wave, e.g., how much the peak varies from the zero (usually
measured in volts (V)), determines the power of the signal. These two quantities are related
by a quadratic relationship: Doubling the amplitude of a signal results in a quadrupling of
the signal power.

In a link, that is a sender communicating data to a receiver, the sender generates a signal
with transmit (signal) power level T that propagates through the channel connecting the two.
The channel could be a wire or it could be the free-space radio frequency (RF) environment in
which signals propagate from the transmitter’s antenna to the receiver’s antenna over the
air.

2.1.1 The Wired Channel

To simplify the discussion, I will start with the case of a wired channel. The transmitted
signal propagates down the wire to the receiver and then is received with receive (signal)



14

Variable Meaning Units

f Frequency Hz
λ Wavelength m
B Bandwidth Hz
T Transmit signal power dBm (decibels relative to 1 milliwatt)
S Receive signal power dBm
α Attenuation dB (decibels, unitless)
θ Phase radians
N Noise power dBm
K Temperature kelvins
ρ Signal-to-noise ratio (SNR) dB
R Shannon Capacity bits per second (bps)
d Distance m
n Path loss exponent unitless
I Interference power dBm
ρI SINR dB
M Number of transmit antennas (antennas)
N Number of receive antennas (antennas)

Table 2.1: Table of notation used in this chapter.

power S. While propagating through the wire, the signal gets slightly weaker as a small
amount of energy is absorbed. The net effect of this absorption is called attenuation, denoted
α, and is defined mathematically as the multiplicative decrease in power induced by the
channel:

α =
T

S
. (2.1)

In addition to attenuation, the wired channel also induces a phase shift as the electromagnetic
signal propagates. The value of this phase shift, denoted θ, depends on factors including
the length of the wire and the frequency of the signal, and is generally considered to be an
unknown, uniformly random quantity between 0 and 2π.

The signal measured by the receiver is also corrupted by broad-spectrum electromagnetic
noise. This corruption is sometimes called Johnson-Nyquist noise after its identification in
1927 by Johnson [52] and explanation in 1928 by Nyquist [83], but it is more commonly
known as thermal noise. Thermal noise can be modeled as a complex Gaussian with average
noise power N (in Watts) equal to

N = kKB, (2.2)

where k ≈ 1.38× 10−23 (in Joules/kelvin) is Boltzmann’s constant, K is the temperature (in
kelvins), and B is the bandwidth. This is called additive, white Gaussian noise (AWGN).
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In the context of 802.11, we typically measure power-related quantities on a logarithmic
scale to capture the wide range of possible values. Power levels such as the quantities T , S,
and N are usually measured in decibels relative to 1 milliwatt, or dBm, and typically take
on values like T = 20 dBm (100 mW) and S = −80 dBm (10−8 mW or 10 pW). To calculate
N, we can use Equation 2.2: Wi-Fi links typically use bandwidths B of 20 MHz or 40 MHz,
which correspond to thermal noise levels of −101 dBm and −98 dBm at room temperature.
In practice, the total noise is assumed to be thermal noise plus a 5 dB–15 dB noise figure,
which is a quantity that estimates additional error added by imperfect analog hardware
used in receiver processing. The total noise for a 20 MHz Wi-Fi channel might then be in the
range of −91 dBm.

Now that we have defined the signal and noise powers, we can discuss the limits
of the communication channel. In their seminal works, Ralph Hartley [40] and Claude
Shannon [104, 105] proved that the capacity of a channel—i.e., the maximum data rate R
at which the transmitter and receiver can communicate—is determined by the channel’s
bandwidth and its signal-to-noise ratio (SNR). The SNR, denoted by ρ, is a unitless quantity
typically measured in decibels and calculated as

ρ =
S

N
. (2.3)

The example signal power of −80 dBm and noise power of −91 dBm correspond to an SNR
of 11 dB.

The Shannon-Hartley Theorem [105] establishes what is called the Shannon capacity to be

R = B log2(1 + ρ). (2.4)

Figure 2.1 shows this relationship for the normalized quantity R/B.

The Shannon-Hartley Theorem determines a bound on the maximum rate achievable
as a function of the bandwidth and signal strength. However, it does not give a practical
scheme that realizes this bound. Instead, systems like 802.11 use many different modulations
that achieve different points along the y-axis and choose among these in practice depending
on the underlying channel conditions.

Note that for real links, the values of S andN are not known a priori. Instead, transmitters
choose an encoding, and the receiver will be able to decode it successfully if the choice falls
below the curve for the SNR experienced. The general problem of choosing the modulation
to use, as well as the selection of other physical layer parameters, is the focus of my thesis. I
describe this problem in more detail in the next chapter.

The binary modulation system I discussed above is a scheme called On-Off Key-
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Figure 2.1: The Shannon Capacity of a communications channel with Gaussian noise,
presented in both linear and logarithmic (dB) scales.

BPSK QPSK 16-QAM

Figure 2.2: Constellation diagrams for the BPSK, QPSK, and 16-QAM modulations.
These constellations are normalized such that each modulation has equal average trans-
mit power, indicated by the red circle.

ing (OOK). Each symbol conveys 1 bit, and since the symbol rate is directly tied to the
bandwidth used by a scheme, OOK can deliver at most 1 bps/Hz. A generalized form of
OOK is Amplitude Shift Keying (ASK), which can send more bits per symbol using multiple
power levels.m-ASK, i.e., ASK withm power levels per symbol, can deliver up to log2(m)

bits per symbol and thus can achieve a higher capacity.

As mentioned above, electromagnetic signals actually have both an amplitude and a
phase. Amplitude modulation varies one of these parameters, and a complementary scheme
called Phase-Shift Keying (PSK) keeps the amplitude constant but varies the phase. A
third scheme known as Quadrature Amplitude Modulation (QAM) varies both parameters
simultaneously and results in a more efficient system when sending more than 2 bits per
symbol. Noting that the polar coordinates given by amplitude and phase can equivalently be
thought of as a complex number,m-QAM can be equivalently thought of as

√
m-ASK in both

the real and complex dimensions simultaneously. Figure 2.2 shows the two-dimensional
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Figure 2.3: The relationship between bit error rate and SNR for the four 802.11 modula-
tion schemes.

constellations that result from picturing the symbols sent in BPSK (i.e. 2-PSK), QPSK (i.e.
4-PSK), and 16-QAM modulation schemes.

There are many more modulation schemes than I have presented here, but PSK and
QAM are the modulations applicable to 802.11. 64-QAM is the highest modulation currently
used by Wi-Fi devices, though the future IEEE 802.11ac amendment [47] will add 256-QAM
to this set.

Recall that the signal will be corrupted by noise when measured at the receiver. Under
the standard AWGN model, we model this corruption as shifting the received symbol by a
random complex vector whose length depends on the noise power. We see in Figure 2.2 that
the different modulations have different constellation densities: The symbols of 16-QAM
are clustered more closely than the symbols of QPSK or BPSK. This means that higher
constellations which encode more bits per symbol are more vulnerable to noise. At low
SNR, the receiver cannot easily distinguish between many symbols, so slower modulations
with fewer constellation points should be used. At high SNR, the receiver can distinguish
between more symbols and thus can use a denser constellation.

This property of the performance of different modulation schemes is closely related to
the Shannon Capacity. Figure 2.3 illustrates the magnitude of this effect for the modulations
used by 802.11 using textbook formulas [108] that relate the SNR to a bit error rate. We can
also connect these different modulations directly to the Shannon-Hartley Capacity Theorem
by examining the capacity achieved by each scheme as a function of SNR (Figure 2.4). In
this graph, I assume an idealized coding scheme that delivers the maximum data rate for
a given bit error rate; the practical schemes in widespread use today are somewhat less
efficient in order to admit less expensive computation.1

1 Though beyond the scope of this thesis, a number of recent proposals for practical rateless codes [33, 87]
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Figure 2.4: The relationship between SNR and capacity for standard modulation
schemes and idealized codes.

2.1.2 The Wireless Channel

The previous section explained the basics of digital communications in the context of a
wired link. Here, I expand to the significantly more complex case of a wireless channel.

In a wireless link, the electromagnetic signal is emitted from an antenna as a radio wave
that then radiates through the wireless medium, i.e. the environment. The dominant source of
attenuation in an wireless link is not absorption by the medium, but rather the diffusion of
energy throughout the environment, of which a small fraction is captured by a receiver’s
antenna. This effect, called path loss, is captured by the Friis transmission equation, which
yields the inverse relationship

S ∝ T

dn
, (2.5)

where d is the distance between transmitter and receiver, and n is the path loss exponent. In
free space, n has a value of 2, reflecting the fact that the energy transmitted at a particular
time is spread out over the two-dimensional surface of a sphere, an area that grows with
d2. (For a directional antenna, the energy is spread over a different geometric shape, e.g., a
cone, but this shape will still have a two-dimensional surface area).

The path loss exponent varies in different indoor environments, but empirically tends
to take on a value between 2 and 4 [108]. This empirical result is explained as the sum of
many complex effects that result from the interaction of radio waves with objects in the
environment. One such effect is shadowing, in which materials such as glass or metal prevent
radio waves from passing through. I explain more additional, more complicated channel
effects below.

In wireless systems, multiple devices might send at the same time and in the same

nearly achieve the Shannon Capacity bound by using much denser constellations and clever coding schemes
across multiple transmissions.
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frequency band; this interference causes a collision during which a receiver will measure the
sum of both transmissions. There are a number of practical problems for operation during a
collision, such as whether the receiver can properly lock onto the desired signal and estimate
the effects of the channel on it. In general, however, we can model the reception probability
by replacing the SNR with the signal-to-interference-and-noise ratio (SINR), which treats the
interfering signal of power I as another source of noise:

ρI =
S

I+N
. (2.6)

While interference is an important problem, many systems, including 802.11, use medium
access control (MAC) protocols to ensure that at most one device transmits at a time.

Beyond path loss, the most important channel effect is the inherent multi-path nature of
indoor wireless environments. At 2.4 GHz and 5 GHz, RF signals bounce off metal and glass
surfaces that are common indoors. This scattering leads to a situation in which many copies
of the signal arrive at the receiver having traveled along many different paths. The net effect
of this RF superposition depends on the phases of the individual signals. When these copies
combine they may add constructively, giving a good overall signal, or destructively, mostly
canceling the overall signal.

The phase-dependent nature of multi-path effects means that they vary over both
frequency and space. For a given distance traveled d, the phase change is 2πd/λ. Thus
wideband channels may exhibit dramatically different received power levels for different
frequencies; such channels are called frequency selective. Measurement studies of frequency-
selective fading report signal variations as high as 15–20 dB [55]; in Chapter 3 I will present
experimental evidence confirming these effects in the environments I studied.

With regard to spatial variation, the small 12 cm and 6 cm wavelengths of Wi-Fi signals
means that small changes in path lengths can alter a situation from good to bad. Statistical
models tell us that multi-path fading effects are independent for locations separated by
as little as half a wavelength. This means that multi-path causes rapid signal changes or
fast fading as the receiver moves, or in the case of a stationary node as the surrounding
environment changes. Movement at fast speed also induces Doppler effect, which aggravates
multi-path effects and makes the channel even more variable.

The net effect of multi-path fading is that the received wireless signal can vary signifi-
cantly over time, frequency, and space. This is a problem for good performance because at
any given time there is a significant probability of a deep fade that will reduce the SNR of
the channel below the level needed for a given communication scheme.

However, an alternative way of looking at the effects of multi-path fading is that they
provide diversity. In a sufficiently rich multi-path environment, there are so many combining
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copies of signals that the channel observed on different, nearby frequencies can be consid-
ered to be independently faded. For this reason among others, many systems including
802.11 use a scheme called Orthogonal Frequency Division Multiplexing (OFDM). In OFDM, a
wide frequency band is split into many subcarriers that each carry different modulated bits
in parallel, with a higher level error-correcting code across them to take advantage of this
frequency diversity.

To get fast rates while only using sending a single symbol at a time, a wideband system
must have a fast symbol rate. Since OFDM sends many symbols in parallel on smaller
subcarriers, an OFDM system sends each symbol for a longer period of time. Thus by
turning a single fast channel into many parallel slower channels, OFDM allows more time
for the channel to average out temporal fades and provides time diversity.

One more type of diversity is spatial diversity: Antennas separated by at least half a
wavelength see independently-faded channels. Devices with multiple antennas can use
schemes that take advantage of the spatial diversity these antennas provide. For example, a
multi-antenna receiver measures multiple independent copies of each transmitted signal.
Thus with clever signal processing, such a receiver can align the phases of these copies and
add them together, which averages out the noise and improves overall channel performance.
In a complementary manner, a multi-antenna transmitter with knowledge of the fading
properties of the individual paths between pairs of antennas can steer its signal such that
the multiple copies arriving at the receiver’s antenna combine optimally. This process, in
which the gain and phase of the signal emitted by each antenna are adjusted (with OFDM,
this adjustment may be different for each subcarrier) is called beamforming.

Finally, suppose that both the transmitter and receiver have multiple antennas. The
foundational work by Foschini and Gans [29] and Telatar [111] in the mid 1990s introduced
spatial multiplexing, which uses this new spatial degree of freedom to improve capacity.
Instead of sending the same data out each antenna as above, a transmitter withM antennas
can use its different antennas to send up to M independent spatial streams of data. An
N-antenna receiver will then measureN different signals, each signal an independent linear
combination of the M transmitted streams. If M 6 N, the receiver has enough information
to solve the linear system and separate the streams, thus providing an M-fold gain in
performance. Thus spatial multiplexing, with N antennas at each side, results in a modified
capacity theorem:

R = BN log2(1 + ρ). (2.7)

Together, spatial diversity and spatial multiplexing techniques form a set of what are called
MIMO (multiple-input, multiple-output) techniques.

I conclude this discussion by mentioning one last channel effect relevant to 802.11:
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Inter-symbol interference. In multi-path environments, some spatial paths can be so long that
the delayed copies of the signal substantially overlap with the next symbol and make it
harder to receive. The delay between the earliest and latest copies is called the delay spread
of the channel, and it can be substantial. OFDM systems that use longer symbol times are
more resilient to this effect, but still repeat each symbol for a period of time called a guard
interval. If the guard interval is at least as long as the delay spread, the receiver can ignore
the inter-symbol interference and still receive a complete symbol.

2.1.3 Summary

In this section, I have presented the fundamental principles of digital communication of
wired and wireless channels, including the limits of noisy RF channels and how data is
encoded. I have also described the most relevant channel effects that communicating devices
must overcome, and the primary techniques used to do so. In the next section, I make this
discussion concrete in the context of Wi-Fi by describing the specifics of the IEEE 802.11n
standard.

2.2 The IEEE 802.11n Standard

The IEEE 802.11 (Wi-Fi) standard [44] is targeted towards defining a mode of operation
for a wireless local area network (WLAN), intended to provide medium-range connectivity
(≈100 m) using low transmit power (at most 1 W). It was first introduced in 1997, and has
been amended many times since. In this thesis, I limit my discussion to the features of
802.11n, the newest physical layer amendment, and 802.11a, its predecessor.

Wi-Fi devices use unlicensed spectrum in the 2.4 GHz and 5 GHz bands, and must coexist
with consumer electronics such as microwaves, cordless phones, and baby monitors. In
addition to this cross-device interference, nearby Wi-Fi networks in separate administrative
domains—such as neighboring apartments—may need to share the same channel. As a
result, Wi-Fi networks are not planned in a centralized fashion, but rather use decentralized
protocols that work towards a good solution in a distributed fashion. For instance, 802.11
includes a carrier-sense multiple access (CSMA) protocol to manage which devices send: In
essence, a transmitter listens to ensure no other devices are transmitting before sending
a packet, and reduces its sending probability exponentially (via exponential backoff ) if its
transmission is not acknowledged.

At the physical layer, 802.11 uses the modulation schemes and OFDM I described above,
operating over 20 MHz channels. In conjunction with different modulations, 802.11 also
uses error-correcting codes with different coding rates to achieve different operating points
in the rate-robustness tradeoff space. I summarize the specific single-stream configurations
in 802.11n as well as the resulting link data rates in Table 2.2.
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MCS Modulation Coding Rate Data Rate (Mbps)

0 BPSK 1/2 6.5
1 QPSK 1/2 13.0
2 QPSK 3/4 19.5
3 16-QAM 1/2 26.0
4 16-QAM 3/4 39.0
5 64-QAM 2/3 52.0
6 64-QAM 3/4 58.5
7 64-QAM 5/6 65.0

Table 2.2: The single-stream 802.11n modulation and coding schemes (MCS). These are
only slightly different than the 802.11a MCS combinations that achieved up to 54 Mbps.
The increase in maximum rate comes from slightly more efficient use of OFDM subcar-
riers and a new, less redundant 5/6-rate code.

The standard link metric is the receive signal strength indicator (RSSI). The RSSI was
included in the 802.11 standard from the beginning as “a measure by the [physical layer
hardware] of the energy observed at the antenna used to receive the current [packet]” [44:
§17.2.3.2]. There are no specified requirements on its accuracy, instead, it is only required
to be “a monotonically increasing function of the received power” [44: §17.2.3.2], and is
generally used by the hardware to tell whether another device is transmitting. In practice,
however, the RSSI reported by commercial Wi-Fi chipsets is an estimate of the received
signal power and can be meaningfully translated into units of dBm. In this case, RSSI can
be used in combination with noise measurements to compute the SNR of the link.

The 2009 standard amendment to IEEE 802.11n [45] added functionality and protocols for
multi-antenna techniques such as spatial diversity, spatial multiplexing, and beamforming.
The 802.11n enhancements are shown in Table 2.3. Most of improvement in the maximum
data rate—from 54 Mbps in 802.11a to 600 Mbps in 802.11n—comes from the ability to use
wider channels and multiple spatial streams. Together, these enhancements add 2 · 2 · 4 = 16
times as many configurations to the space of a single link. Beamforming is effectively an
analog parameter and adds nearly unbounded options.2 The gains of beamforming vary
depending on the channel—for strong links, they tend to be small, but for weak links
beamforming can provide dramatic performance improvements [7].

The hardware/software interface in 802.11n operates at the level of individual packets
or continuously-transmitted batches of packets. Packets are sent to the hardware and
transmitted over the air. The receiver detects a new transmission from the increase in

2 For transmitter and receiver each using 4 antennas on a 40 MHz channel, representing the beamforming
matrices at maximal resolution takes 29,184 bits.
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Enhancement Capacity Gain Description

Short OFDM
1.11× Data can be more efficiently encoded when the

guard interval multi-path delay spread is low.

Spatial multiplexing 2× to 4× Up to 4 concurrent spatial streams.

40 MHz channels 2.08× More bandwidth, higher capacity (Eq. 2.4).

Beamforming ??
A sender with multiple transmit antennas can
shape its signal to match the RF channel, im-
proving both performance and reliability.

Table 2.3: IEEE 802.11n adds a number of enhancements to the base single-stream config-
urations depicted in Table 2.2. The performance improvement from beamforming varies
depending on the properties of the wireless channel.

energy, estimates the parameters of the wireless channel from the packet’s standard, known
preamble, and then decodes the packet. The standard behavior for 802.11 links is that all
bits—after error correction—must be correct in order for a packet to be received, otherwise
the packet is dropped by the hardware. Correctly received packets are delivered to the
software layer in conjunction with physical layer configuration information about the
transmission (e.g., what MCS in Table 2.2 was used) and reception (e.g., which receive
antennas were used) of the packet, plus physical layer metrics of link quality.

2.3 Summary

In this chapter, I have presented the background information to provide a basic understand-
ing of wireless channels and the specific IEEE 802.11n technology used to operate in them.
As I described in Section 2.2, there are many different techniques that a transmitter and/or
receiver can use to achieve robust operation in indoor wireless channels. However, the
challenge—and the focus of most Wi-Fi research—is to decide which techniques to use,
when to use them, and how to configure them to obtain the best operating point given the
actual properties of the wireless channel. This is the primary problem I tackle in this thesis;
in the next chapter I describe this problem in detail and given an overview of my approach.
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Chapter 3

PROBLEM AND APPROACH

The problem I study in this thesis is how to inform configuration decisions for wireless
networks. I begin this chapter by presenting some of the primary problems in this space.

Next, I discuss how we handle these challenges today. There are two primary classes of
techniques: (1) statistics-based schemes which only use packet reception or loss as an indicator
of the suitability of a particular configuration for a specific channel, and (2) channel-based
schemes which use measurements of the RF channel to predict packet delivery. Generally,
packet delivery or loss is too specific, because a packet probe in one configuration says
little about whether another configuration—say, at a different rate or antenna mode—-will
work similarly. This means that many configurations must be tested. On the other hand, RF
channel measurements offer the potential for predicting the performance of a configuration
without testing it. However, the aggregate data such as RSSI recorded today and the way
they are applied only coarsely reflect the true behavior of wireless operation over the
underlying RF channel. Thus RF channel measurements are not presently accurate enough
to provide good predictions.

My hypothesis is that it is possible to rapidly and accurately predict how well different
configurations of MIMO and OFDM wireless links will perform in practice, using a small
set of wireless channel measurements. To do so, I develop a comprehensive system that
uses low-level RF channel measurements in conjunction with a simple but powerful model
to predict the performance of every operating point in the 802.11n configuration space.

3.1 Problem: Rate Control for a Single Link

The problem of rate control is to find a rate configuration that can successfully deliver
packets while maximizing performance. With 802.11n and its modern multi-antenna and
physical layer techniques, this problem has become significantly more complex. To illus-
trate this, Figure 3.1 shows the available rate configurations in 802.11n for a device with
three antennas. These configurations use the eight modulation and coding scheme (MCS)
combinations described in Table 2.2 and the 802.11n enhancements shown in Table 2.3.

At the bottom of the figure, the SIMO line shows the eight single-stream configurations,
which provide rates ranging from 6.5 Mbps to 65 Mbps. These are precisely the eight choices
for rate that algorithms controlling a legacy 802.11a/g system must choose from.

This space expands by a factor of 12 when using 802.11n with three antennas. Adding
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Figure 3.1: The different rate-related 802.11n configurations that use three antennas and
802.11n physical layer enhancements.

a second (MIMO2) and third (MIMO3) spatial stream increases the maximum rate to
195 Mbps, for a total of 24 different configurations. For each of these configurations, 802.11n
adds the optional use of double-width (40 MHz, HT40) channels, which raises the maximum
rate to 405 Mbps with 48 choices. Finally, a physical layer tweak to a shorter OFDM guard
interval (SGI) adds another ≈ 11% and pushes the fastest configuration to 450 Mbps among
96 possibilities.

Looking forward, though three antennas are common today 802.11n can support up
to four. The next amendment (802.11ac) will add two new single-stream rates using the
256-QAM modulation, plus channels of up to 160 MHz bandwidth. Combined, 802.11ac
will comprise 320 configurations for rate alone—a factor of 40 more than 802.11a. Note that
this analysis ignores related configurations such as antenna selection and beamforming,
which exacerbate the problem. For the foreseeable future, the dramatic expansion in the
rate space will continue as wireless technology evolves.

Having defined the basic problem of rate control, in the next two sections I describe the
statistics-based and the channel-based approaches to solving it.

3.2 Existing Statistics-based Approaches

The majority of rate control algorithms today rely on packet loss statistics to adapt the
operating rate. These algorithms use the number of losses as a signal of link quality. With
too many losses, the channel is too poor to support the current rate, and the system should
fall back to a lower rate. Conversely, when a link experiences a very small number of losses
using its current rate, it sends some packet probes at a new faster rate, and switches to the
faster rate if those probes succeed. Figure 3.2 shows a typical 802.11a adaptation search
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6 9 12 18 24 36 48 54

Figure 3.2: A typical rate adaptation search pattern for 802.11a. When the current
18 Mbps rate works well, a rate control algorithm might probe one or two faster rates
(solid lines). If the current rate results in many losses, the algorithm may fall back to the
slower 12 Mbps rate (dashed line).

pattern, where each box corresponds to an 802.11a rate and the arrows show the faster
(solid) and slower (dashed) rates that might be probed.

The first algorithms (ARF [56] and AARF [66]) would only switch between a rate and the
next fastest or slowest; later implementations look up to two rates ahead [14]. The dominant
802.11a rate adaptation algorithm used today is minstrel [109], which performs intelligent
(biased) sampling of all rates to keep up-to-date estimates of the global rate space and can
thus take discontinuous jumps. Recent revisions to these algorithms have focused on better
handling of corner cases, such as improving performance when there is interference via
adaptive control over RTS/CTS [109, 123].

Some algorithms have been proposed to use bit error rate statistics instead of loss rate
statistics to adapt rate. SoftRate [120] estimates the bit error rate using a soft-output Viterbi
decoder for error correction, and Chen et al. [22] designed a coding scheme called Error
Estimating Coding (EEC) to enable accurate BER estimation at a higher layer.

3.2.1 Complication: Multi-dimensional Search Space

All of the statistics-based approaches, which walk up or down the list of rates based on
whether the current rate works well, implicitly rely on the following basic assumption
(outlined by Vutukuru et al. [120]):

Assumption: BER is a monotonically increasing function of the bit rate.

But 802.11n rate configurations are non-monotonic. That is, it is not necessarily true that
faster configurations are generally less likely to work than slower ones. This violates the
axiom of these statistics-based approaches, and hence the multi-dimensional search space
must be treated as such. I explain why in the following example.

Figure 3.3 shows three plausible rate maps for 3-antenna 802.11n links. In these rate maps,
each row represents a different number of spatial streams, and each column represents
a different MCS. A cell is shaded if a link can reliably deliver packets using that rate
at that number of streams. The black box corresponds to MCS 12—2 streams at 39 Mbps
each—which is the highest working 2-stream rate for these three hypothetical links.

In 802.11n, each of the scenarios (A), (B), and (C) illustrated in Figure 3.3 is possible. In
particular, if the link can reliably deliver packets using MCS 12 then it is likely that MCS 4—
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Figure 3.3: Three different rate maps for 802.11n links. On these links, MCS 12 (the black
box) is the highest reliable 2-stream rate, and gray boxes indicate other reliable transmit
configurations. A (left): The worst possible situation in which no 3-stream rates and no
higher single-stream configurations work. B (middle): The best case in which all single
stream rates work and all 3-stream rates work up to 39 Mbps each. C (right): An average
case in which the set of reliable rates decreases as more spatial streams are used.
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Figure 3.4: Rate maps for the links in Figure 3.3 now mapped into one dimension and
sorted by total link speed (Mbps). In this view, the strict monotonicity assumed by rate
adaptation algorithms is violated, and the violations occur in a channel-dependent way.
Thus, 802.11n rate adaptation requires optimization along multiple dimensions.

the same encoding, but fewer streams—works as well. The same holds for MCS 11, since it
uses the same number of streams but a less dense encoding. Similar logic implies all the
shaded cells in link (A), which represents the most conservative situation in which MCS 12
works well. Conversely, link (B) exhibits the best corresponding situation; higher-encoding
single-stream configurations may also deliver most packets, and there may be little penalty
from using 3 streams, thus resulting in the same set of 3-stream links working. Finally, link
(C) exhibits an average case, in which lower rates must be used as the number of spatial
streams increases.

The key is that each of these three links is plausible, which means that the search space
for rate is non-monotonic in 802.11n. In Figure 3.4, I have redrawn the rate maps for these
three links along a single-dimension, sorted by data rate. Ties in pure data rate—e.g., MCS 1
vs MCS 8, both at 13 Mbps—are broken such that fewer streams is lower in the search. Here
we can see that for all three links there exist higher rates that work well where lower rates
do not. I also plot the measured rate maps for 166 wireless testbeds links in Figure 3.5.
These results show that with MIMO, 802.11n rates are not monotonic in practice. Thus a
rate configuration algorithm for a multi-antenna link needs to consider a multi-dimensional
search space.
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Figure 3.5: Rate maps for 166 wireless links in my 802.11n testbeds show that with
MIMO, the rate space is not monotonic in practice.
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Figure 3.6: A typical rate adaptation search pattern for 802.11n. The current rate configu-
ration is MCS 4, which uses one 39 Mbps stream. There are three different immediately
faster configurations, indicated by the solid lines. There are also 5 rate configurations as
potential fallback rates, indicated by the dashed lines, that do not offer better bitrates
but may be faster if MCS 4 experiences loss. These configurations offer different trade-
offs between the number of spatial streams and the density of the modulations, and all
are valid options for the next choice of rate.

3.2.2 Current 802.11n Statistics-based Approaches

Figure 3.6 illustrates the multi-dimensional search challenge with a concrete example. Each
row corresponds to a transmit configuration with one, two, or three spatial streams. The
eight boxes correspond to the eight 802.11n MCS combinations, placed in columns that
reflect the aggregate link speed.

As we saw in Figure 3.2, the single-dimensional search algorithm might try one or two
rates higher, and during periods of loss it might fall back to the next lowest rate. In contrast,
when increasing 802.11n rate from a single stream at MCS 4 (39 Mbps), the configurations
MCS 5 (52 Mbps), MCS 11 (MIMO2-52 Mbps), and MCS 18 (MIMO3-58.5 Mbps) are all trans-
mit configurations with better link speed, and each might work or not work depending on
the channel. When MCS 4 experiences loss, there are five choices of fallback configuration.
This includes the higher-stream MCS 10 (MIMO2-39 Mbps) and MCS 17 (MIMO3-39 Mbps)
which both have the same link speed and might work, as they use more robust modulation
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and coding combinations (but require good separation between streams).

MiRA [84] is a recent research algorithm that implements a version of this multi-probing
scheme, as does the minstrel_ht [28] algorithm used by the Linux kernel to do 802.11n rate
selection in practice. A third approach is used by Intel’s iwlwifi driver [49], which uses an
802.11a-like algorithm to select between MCS using a fixed number of streams, and adjusts
the number of streams at coarse intervals.

3.2.3 State of the Art in Statistics-based Approaches

The dominant algorithms used in the Linux kernel today are minstrel [109] (for 802.11a/g)
and minstrel_ht [28] (for 802.11n). In general, statistics-based schemes provide good perfor-
mance for static links in which the devices do not move and the surrounding environment
does not change. For such cases, the algorithms may be inefficient at first but will converge
to a good operating point. The challenge, as pointed out by several works [43, 55, 120], is
that—depending on the speed at which devices move or the environment changes—these
algorithms may be slow to react to varying conditions for mobile links, resulting in signifi-
cant performance degradation. In Chapter 7, I evaluate loss-based rate selection algorithms
for 802.11n and confirm that the increased size of the search space and the larger number of
rates that must be probed do indeed result in poor performance in fast changing channels.

SoftRate [120] and EEC [22] are the newest BER-based adaptation algorithms. Both
algorithms provide faster adaptation than their loss-based counterparts because by using
the BER they can distinguish between a rate that is barely working with marginal BER (in
which case the next fastest rate will not work) and a rate that has a lot of headroom (in which
case it is worth probing the next fastest rate). These algorithms perform well at shifting up
and down within a monotonic rate space of 802.11a/g; however, their BER estimations do
not apply across the orthogonal dimensions such as multiple spatial streams of 802.11n.
To handle 802.11n, these algorithms would need to be amended to do multi-dimensional
search as well.

3.3 Channel-based Approaches

The second class of approaches to configuring rate use channel information to guide rate
selection or adaptation. As I described in Chapter 2 (Figure 2.3), textbook analyses of
modulation schemes give delivery probability for a single signal in terms of the signal-to-
noise (SNR) ratio [30]. These theoretical models hold for narrowband channels with additive
white Gaussian noise. They predict a sharp transition region of 1–2 dB over which a link
changes from extremely lossy to highly reliable. This feature in theory makes the SNR a
valuable indicator of performance.

This gives rise to a simple SNR-based configuration scheme, at least for selecting rate:
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Upon receiving a packet, a device can use the measured RSSI to compute the Packet SNR and
predict the fastest rate supported. It can then feed this information back to the transmitter,
which will use the newly selected rate for subsequent transmissions. This approach was
explored in simulation by Holland et al. [43] with an algorithm called RBAR and found to
work well.

3.3.1 Complication: Packet Delivery versus SNR in Practice

Though SNR-based rate control algorithms may work well in simulation, subsequent
practical work found that the Packet SNR computed from RSSI was unreliable [3, 95, 127].
In very early devices, the RSSI was found to vary wildly over time or device temperature,
providing unreliable thresholds; this was corrected by calibration in later devices (e.g.,
confirmed by Zhang et al. [126] and by my measurements). Reis et al. [95] found that RSSI
estimates were corrupted by interfering transmissions. Finally, even in the absence of these
latter effects, several studies found that the same RSSI value gives dramatically different
performance for different links.

To understand which effects still hold for 802.11n hardware, I generated performance
curves using an Intel Wireless Wi-Fi Link 5300 a/g/n wireless network card (I describe my
experimental platform in Chapter 5). I connected two network cards together via a wire,
and configured them to operate in a mode that uses a single antenna to transmit or receive.
Using an inline variable attenuator I varied the amount of power received, and for each
power level I sent around 1,000 packets using each of the eight 802.11n single-stream rates
(Table 2.2) and measured the fraction of delivered packets, the packet reception rate (PRR).
With these measurements, I plotted the PRR against the link’s SNR (computed from RSSI
measurements at the receiver), and present the result in Figure 3.7.

This figure shows a characteristic sharp transition region between SNR values at which
the link goes from lossy to working, 2 dB at low modulations up to 4 dB for the fastest
65 Mbps rate. There is also a clear separation between rates: At a given SNR value, it is clear
which rate should be used. This wired link provides a good approximation of a theoretical
narrowband channel despite the relatively wide 20 MHz channel, the use of 56 OFDM
subcarriers, coding and other bit-level operations. This is the behavior we would want from
a link metric in order to predict packet delivery.

In contrast, packet delivery over real wireless channels does not exhibit the same picture.
Figure 3.8 shows the measured PRR versus SNR for three sample rates (6.5 Mbps, 26 Mbps,
and 65 Mbps) over all wireless links in two wireless testbeds, using the same 802.11n NICs.
The SNR of the transition regions can exceed 10 dB, so that some links easily work for a
given SNR and others do not. There is no longer clear separation between rates. This is
consistent with the measurements from prior work mentioned above [3, 55, 95, 126, 127].



32

 0

 20

 40

 60

 80

 100

 0  5  10  15  20  25  30  35

P
a

c
k
e

t 
R

e
c
e

p
ti
o

n
 R

a
te

SNR (dB)

6.5

13

19.5

26

39

52

58.5

65

Figure 3.7: A wired 802.11n link with variable attenuation has a predictable relationship
between SNR and packet reception rate (PRR) and clear separation between rates.
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Figure 3.8: Over real wireless channels in my testbeds, the transition region varies by
10 dB or more. The wireless channel loses the clear separation between rates. Only three
rates are shown for legibility.

3.3.2 State of the Art in SNR-based Approaches

Although prior studies and my measurements showed that Packet SNR does not accurately
predict delivery across links, they also found that for a particular link a higher SNR generally
has higher packet delivery for a given rate [3,55,126]. Consequently, there are two algorithms,
SGRA [126] and CHARM [55], that use SNR feedback from the receiver in conjunction
with packet loss statistics in order to learn the relationship between SNR and packet
delivery online. Like statistics-based approaches, these algorithms work well for static links.
Additionally, they provide good performance for fixed devices in mobile environments [55],
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Figure 3.9: Channel gains on four links that perform about equally well at 52 Mbps.
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because the learned relationship between SNR and PER is only slightly affected by moving
objects and the learned calibration is generally valid. However, successive measurements
by Vutukuru et al. [120] showed that CHARM tends to under-select in mobile links because
it is unable to adapt its thresholds quickly enough to respond to the changing channel.

3.3.3 Complication: High-level Measurement of Low-level Subchannel Effects

I listed above several reasons that Packet SNR calculated from RSSI has historically been
a poor predictor of performance. In the modern era of calibrated hardware, however,
measurements no longer vary significantly with changing temperature or power level,
or across devices. Instead, the dominant factor is likely to be the use of OFDM, and the
presence of frequency-selective fading in the RF channel.

To illustrate this fact, I chose four representative links in my 802.11n testbed. These
four links have SNRs ranging from 16 dB to 30 dB and yet they each perform similarly,
delivering around 80% of packets sent using single-stream MCS 6 (52 Mbps). Figure 3.9
shows the packet reception rates and SNRs for these four links; it also includes the SNRs of
the individual OFDM subcarriers for each links.

With this detailed picture, we can see that multipath causes some subcarriers to work
markedly better than others although all use the same modulation and coding. These
channel details, and not simply the overall signal strength as given by SNR, affect packet
delivery. The fading profiles vary significantly across the four links. One distribution is
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quite flat across the subcarriers, while the other three exhibit frequency-selective fading of
varying degrees. Two of the links have two deeply-faded subcarriers that are more than
20 dB down from the peak.

Because of these different fading profiles, these links harness the received power with
different efficiencies. The more faded links are more likely to have errors that must be
repaired with coding, and they require extra transmit power to compensate. Thus, while the
performance is roughly the same, the most frequency-selective link needs a much higher
overall Packet SNR (30.2 dB) than the frequency-flat link (16.5 dB). This difference of almost
14 dB (more than 20×) highlights why Packet SNR based on RSSI does not reliably predict
performance.

To exacerbate this issue, 802.11n adds MIMO techniques to the network. During a multi-
stream transmission, the receiver still records only one RSSI value per antenna. This RSSI
(and the resulting SNR) reflects the total received power combined across all subcarriers
and all spatial streams. The total power received will vary with the number of streams, and
the actual performance of the link will depend on how well this total power is balanced
across spatial streams and how well the receiver can separate the two spatial streams. Thus
in 802.11n Packet SNR is likely to be even less accurate when predicting link performance.

3.3.4 Approach using Low-level RF Measurements

AccuRate [103] takes an alternative approach to using physical layer information to predict
performance. Instead of measuring information about the signal power, AccuRate measures
the error vectors (described in Chapter 2) of the received symbols when demodulating
a packet. To make predictions about bit error rate, AccuRate then replays those same
error vectors to a physical layer simulator, which models the reception of a packet using
each of the different rates and selects the fastest successfully received packet. Though it
would be impractical to implement a full physical layer simulator for each received packet,
AccuRate was shown to be significantly more accurate than SNR-based algorithms with
performance comparable to SoftRate. At the same time, AccuRate suffers from the same
802.11n-related flaws as the remaining algorithms: The magnitude of the error vectors will
change depending on different numbers of spatial streams or channel widths or the use of a
short guard interval, and AccuRate can handle none of these cases without implementing a
multi-dimensional search.

3.4 Further Wireless Configuration Problems

In the previous section, I outlined the rate configuration problem, the current approaches,
and the multi-dimensional aspects of OFDM and MIMO technologies that make them less
effective. In this section, I briefly mention several other configuration problems and how
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they are solved in Wi-Fi networks today. (For a deeper discussion of each, see Chapter 9.)
Together, these problems show the richness of the wireless network configuration space.
Today, they are handled separately, if at all; in future wireless networks we will want the
ability to configure them all concurrently.

3.4.1 Antenna Selection

A transmitter sending fewer spatial streams than it has transmit antennas may use only a
subset of the available antennas to save power or pick the best subset to improve perfor-
mance. Among production 802.11n drivers in Linux, only Intel [49] has an antenna selection
algorithm; within a fixed number of streams it occasionally probes the different transmit
antenna configurations. In this algorithm, switching between transmit antenna sets occurs
on timescales of seconds or longer.

In the analogous scenario on the receive side, some chips automatically use only a subset
of receive antennas when receiving a packet instead of fully maximizing available spatial
diversity. These algorithms typically use Packet SNR measurements of the antennas to
determine when additional antennas will add little gain. (Of course, this determination can
be erroneous in the face of subchannel fading effects.)

3.4.2 Channel Width Selection

When both devices in a link support multiple channel widths, they may obtain better
performance or power savings depending on the bandwidth they choose. Wider channels
generally offer higher ideal Shannon Capacities, but since the total power is constrained
this is not necessarily true at low SNR. Links may also wish to use smaller channels to avoid
badly faded OFDM subcarriers.

SampleWidth [21] uses a probing algorithm to determine which width gives the best
performance, aiming to achieve spectral isolation from interferers. For choosing between
20 MHz and 40 MHz bands, the algorithms in Linux tend to integrate channel width selec-
tion into the rate selection algorithm. When both widths are available, Intel’s driver, which
coarsely switches between different numbers of spatial streams, doubles the set of modes it
probes by instantiating one copy for each potential bandwidth.

3.4.3 Transmit Power Control

Some devices have the ability to adapt their transmit power levels to save energy or to
reduce interference with other nodes. In practice, however, all drivers seem to aim to
optimize performance of their link, and simply use the maximum output power. The effects
of transmit power control on a link are unpredictable (because RSSI does not capture
OFDM fading), so research proposals to control transmit power typically rely on sampling
performance and/or interference at various power levels.
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3.4.4 Access Point Selection

When clients select which access point to connect to today, a number of factors are important,
including both the quality of the link to the access point and also the load on that access
point. Clients today typically choose access points solely based on the measured Packet
SNR, on the assumption that it is a good proxy for downlink performance. Some proposed
enterprise AP systems (e.g., DenseAP [78]) can take load into account as well.

One interesting note is that today’s algorithms are not heterogeneity-aware. Consider a
choice of two APs: (1) with 30 dB SNR and 3 antennas, and (2) a closer AP with 35 dB SNR
but only 2 antennas. Today’s clients will choose AP (2) with the larger SNR, even though
the first will likely provide better bandwidth.

3.4.5 Channel Selection

Channel selection is the problem of choosing the best operating frequency for a pair (or set)
of wireless devices. This is not a runtime choice in today’s access point networks, because
the frequency is chosen by the AP. However, channel selection is likely to be an important
problem in device-to-device networks, e.g., Wi-Fi Direct. (I note that algorithms have been
proposed for the related problem of distributed access point channel assignment to manage
load and interference (e.g., [4]).

3.4.6 Multi-Hop Routing

Multi-hop paths will be needed in device-to-device networks, but are not needed in today’s
AP networks. Work in this space uses a combination of probing, Packet SNR-based heuristics,
and state space reduction (e.g., assuming single-antenna devices and a single fixed rate
network-wide). One more practical recent proposal by Bahl et al. [10] uses relays to address
the rate anomaly problem in Wi-Fi access point networks, and uses Packet SNR to predict
bitrate and calculate how well paths work. The performance of these solutions depends on
the accuracy of these heuristics, which have not yet been adapted for heterogeneous devices
or been made MIMO-aware.

3.4.7 Spatial Reuse

Spatial reuse is the problem of managing concurrent transmissions that occupy the same
frequency. In today’s access point networks, algorithms typically aim to have only one
transmission at a time and adaptively turn on RTS/CTS when necessary to eliminate hidden
terminals that hurt performance. This effectively avoids spatial reuse entirely.

CMAP [121] is a state-of-the-art algorithm to promote spatial reuse that determines
whether two links can operate concurrently on the same frequency. However, CMAP only
works by fixing the entire network to homogeneous single-antenna devices using the same
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rate, and even so it requires a complex distributed probing algorithm in a static environment
to achieve good performance.

3.4.8 Beamforming

Finally, there is the problem of beamforming, that is, for a transmitter to shape the combined
signal sent out its antennas so that the spatial paths best combine at the receiver. This
is not yet used in 802.11n, so I discuss the theoretical work and challenges to practical
implementations.

Theoretical gains from beamforming are evaluated by measuring the increase in Shannon
Capacity using ideal hardware and optimal receiver algorithms, rather than by the practical
constraints of real hardware. I do not know of any practical systems for Wi-Fi that use this
type of beamforming, but such a system would need a way to ground the output of the
theoretical model to evaluate how the link would work in practice. Rather than an abstract
complaint, there are real issues such as the tension between the optimal “water-filling”
algorithms for beamforming [115] (which allocate power unequally across antennas or
subcarriers) and practical hardware constraints such as amplifier peak-to-average-power
limits.

In practice, I imagine that this grounding would be done by probing the link perfor-
mance, as has been the case with analog beamforming strategies [73] that operate in a
fundamentally different way than 802.11n-like beamforming.

3.4.9 Summary

I have described several configuration problems for wireless networks. In Wi-Fi today,
these tasks are complicated to implement and have not been adapted to new technologies
like the use of multiple antennas in 802.11n. In practice, these challenges mean that these
tasks are often simplified drastically or avoided entirely. In my thesis, I aim to make these
configuration problems practical solve.

3.5 My Approach: An Effective SNR-based Model for Wi-Fi

My hypothesis is that it is possible to rapidly and accurately predict how well different configu-
rations of MIMO and OFDM wireless links will perform in practice, using a small set of wireless
channel measurements. I develop a framework to evaluate how well a particular physical
layer configuration works that is flexible enough to handle all the problems discussed in
this section. My system uses low-level RF channel measurements in conjunction with a
simple but powerful model to predict the performance of each operating point in a large
physical-layer configuration space.

In particular, I develop a practical methodology that uses low-level measurements of
the RF channel and the concept of an Effective SNR [79] to predict performance for wireless
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Figure 3.10: Simplified overview of an RF link operating over multiple subchannels.

channels that use modern physical layer technologies such as OFDM, multiple antennas,
variable channel widths, and spatial diversity and multiplexing. I also explain how to apply
this prediction engine to a wide variety of link and network configuration problems such
as those described in this chapter. To demonstrate that this methodology is practical, I
prototype a working system in the context of IEEE 802.11n, which is the dominant consumer
wireless networking technology today and includes these state-of-the-art RF techniques.
Finally, to show that my model works, I use my prototype to evaluate the accuracy of
the choices made using my techniques. I find that my model accurately predicts packet
delivery over hundreds of indoor wireless links in two environments, and that this level of
accuracy is sufficient to lead to good configurations for many link and network problems.
Because channel measurements can be obtained rapidly and Effective SNR uses lightweight
computation,

3.5.1 Effective SNR-based Model

The central component in my thesis is a model for packet delivery that uses low-level RF
measurements called CSI (see Section 3.5.2 below) to predict packet loss over real wireless
channels. To be useful, this model must accurately predict the packet delivery probability
for a given physical layer configuration operating over a given channel. It must also be
simple and practical, so that it can be readily deployed, and it must cover a wide range of
physical layer configurations, so that it can be applied in many settings and for many tasks.

In this thesis, I scope my model to devices that use MIMO and OFDM, which captures the
fundamental technological primitives for many current and future networks. In particular,
the scope of my model is 802.11n including all the enhancements described in Section 2.2.
My model is based on the concept of Effective Eb/N0 developed by Nanda and Rege [79],
and described as follows:

Figure 3.10 shows a simplified overview of a link operating over an RF channel that has
multiple subchannels, such as MIMO spatial paths or OFDM subcarriers. The transmitter
applies error correction to the original data packet, and then processes the coded bitstream
and maps the resulting symbols onto the multiple subchannels. The receiver processes
the noisy signal to recover the (potentially errored) coded bitstream, and then uses error
correction to attempt to recover the original data bits.

The key hypothesis introduced by Nanda and Rege is that error correction—in conjunc-
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tion with mechanisms like frequency- and spatial-aware interleaving in 802.11n—works to
spread the errors caused by faded subchannels across the entire channel. If this assumption
holds, the link can be modeled as performing with an aggregate error rate equal to the
average error rate across subchannels. This average bit error rate is called the Effective BER
of the channel, and from it we can compute the Effective SNR of the channel. Since the
four links displayed in Figure 3.9 have similar error performance, they should have similar
Effective SNRs. Then the Effective SNR can be used as a metric of link quality and hence
can provide accurate estimates of packet delivery.

My model is based on Nanda and Rege’s work, which was framed in the context of time-
varying channels for CDMA. I extend their work to handle OFDM and MIMO subchannels.
I include practical considerations such as implementation constraints in real hardware and
the effects of operating over real channels. I also present the first experimental evaluation of
Effective SNR as applied to Wi-Fi.

3.5.2 Model Input: Fine-grained RF Measurements

As described above, the input to my Effective SNR-based system is a set of low-level RF
channel measurements. The particular measurements I use in this thesis are called Channel
State Information (CSI). For an OFDM link, the CSI comprises the channel gain coefficient
(amplitude and phase,1 see Chapter 2) for each OFDM subcarrier. For an NxM MIMO link,
the CSI is an NxMmatrix where each entry reflects the channel gain coefficient from one
transmit antenna to one receive antenna. For a MIMO-OFDM link such as in 802.11n, the
CSI comprises a three-dimensional NxMxS matrix that reflects the NxM MIMO link for
each of S subcarriers.

A single comprehensive CSI measurement captures the low-level channel details that
enable my model to calculate the Effective SNR for a wide configuration space. I next
summarize how these measurements are used.

3.5.3 Model Output, and how to Apply it

I describe the model and how it is used in complete detail in the next chapter, but the
basic structure of the model is simple: Given (1) a current CSI measurement of the RF
channel between transmitter and receiver, and (2) a target physical layer configuration of
the transmit and receive NICs, it predicts how well that link will deliver packets in that
configuration.

This simple decision primitive integrates easily into higher-layer optimization protocols.
These include solutions to all of the problems mentioned in this chapter, such as selecting

1 Note that in Figure 3.9, I plot only the amplitude as the phase offset does not affect packet delivery for a
SISO link (assuming it is properly equalized by the receiver).
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the best rate, number of spatial streams, or transmit antenna set; whether to use 20 MHz
or the entire 40 MHz channel; or choosing the lowest transmit power at which the link
supports a particular rate. The key is that my model makes the most complicated step of
those protocols—evaluating how well a link will work in a particular configuration—trivial.

3.5.4 Problems Addressed

Application of Effective SNR Described in

Bitrate/MCS selection Chapter 6, Chapter 7
Channel width selection Chapter 6, Chapter 7
Antenna selection Chapter 6, Chapter 7
Transmit power control Chapter 6
Channel selection Chapter 8
AP selection Chapter 8
Multi-hop path selection Chapter 8
Interference planning/Spatial reuse Future work
Partial packet recovery/FEC Bhartia et al. [13]
Beamforming Future work
Multicast rate selection Future work

Table 3.1: A variety of applications of Effective SNR. I describe and evaluate how to
solve many of these problems with Effective SNR in this thesis, some have been ad-
dressed by other researchers using my research platform, and I leave some problems for
future work.

Table 3.1 shows a list of several potential applications of Effective SNR. These cover all
the problems described above and range from optimizing various parameters of a single Wi-
Fi link, such as the MCS or antenna set used, to coordinating many nodes in a dense wireless
network. Additionally, I identify applications that can be implemented by looking at other
aspects of the Channel State Information in Table 3.2. These provide useful primitives that
can enable systems to adapt behavior based on the location and movement of the user.

Combined, I believe these applications form the critical building blocks for configuring
dense future wireless networks like Wi-Fi Direct. In particular, my Effective SNR model
provides the information needed to select rates or configure the network topology, among
other things. The CSI can be used to supplement these schemes, particularly by using
mobility classification to determine when a device starts to move and trigger reconfiguration
of the wireless network in response. I implement and evaluate many of these applications
in the rest of this thesis, several have been investigated by other researchers in follow-on
work, and some are left for future research.
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Application of CSI Described in

Mobility classification Chapter 8
Guard interval selection Future work
Indoor localization FILA [124], PinLoc [102], SpinLoc [100]

Table 3.2: A variety of applications of Channel State Information. I describe and evaluate
how to classify mobility in this thesis. Some problems have been addressed by other
researchers using my research platform. I leave guard interval selection for future work.

3.6 Summary

In this chapter I have presented a detailed overview of wireless link and network configura-
tion problems, and the statistics-based and channel-based approaches used today. Generally,
packet loss statistics are too specific, applying only to a single or a few configurations. These
approaches therefore require packet probes of many different operating points, and are
slow to converge in changing channels. Conversely, channel measurements used previously
have been too general, not capturing the low-level details of the channel. Thus they do
not provide accurate predictions and cannot be used to select operating configurations in
practice.

I then described my channel-based approach, which uses low-level channel measure-
ments of the MIMO and OFDM subchannels in conjunction with an Effective SNR-based
model to provide a way to predict performance over the broad configuration space. In the
next chapter, I flesh out this model and how to use it, and argue that it is indeed flexible
and has low overhead. In the remainder of the thesis, I will show that my model makes
accurate predictions that lead to good choices of operating points in practice for many of
the problems I described in this chapter.
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Chapter 4

EFFECTIVE SNR MODEL

In this chapter, I detail my Effective SNR-based model for Wi-Fi. I set the stage for the
discussion with a detailed description of the operation of a MIMO-OFDM link.

I then present the core Effective SNR model, showing how the input channel state is
processed to determine how well a particular transmitter/receiver configuration set will
deliver packets. This process is conceptually simple, but each step is complex, because the
model must be able to handle a wide range of transmitter and receiver techniques and
their implementations. The challenge is to capture these complexities in a relatively simple
model.

Having described my model and how it meets this goal, I then explain how an algorithm
can use it make configuration decisions. I also describe what the wireless on-air protocols
for using my model actually look like. I conclude this chapter by comparing my Effective
SNR approach to other state-of-the-art techniques for understanding and predicting the
performance of wireless channels.

4.1 Overview of a MIMO-OFDM Link

I begin with a detailed description of a MIMO-OFDM link in the context of 802.11n in order
to explain the configuration space and implementation-specific choices that my model my
model must support (Figure 4.1). The first block shows standard transmitter processing that
generates S spatial streams of modulated symbols from the bits of a packet. The internals
of this block scramble the original packet to randomize the bits, add error correction,
then split the coded bits across the S spatial streams and interleave them between the
OFDM subcarriers. These steps spread bits that are coded together across frequency- and
spatially-diverse subchannels, after which the transmitter modulates the spread bits into
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Figure 4.1: A detailed view of a MIMO-OFDM link in the context of 802.11n.
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the S streams.

The second block is the spatial mapper V, which maps the S spatial streams to the M
transmit antennas. Different spatial mapping algorithms might map each stream to a single
antenna, send a linear combination of each stream to each antenna, or (when S < M) use
Space-Time Block Codes (STBC) to take advantage of the extra spatial diversity provided by
excess transmit antennas.

These signals then propagate across the RF channel H to the N receive antennas. Note
that although the figure shows a single RF channel H, the channel can actually be different
for every OFDM subcarrier. Consequently, transmitters with the ability to use beamforming
can choose for each subcarrier i a different spatial mapping Vi designed to make the best
use of the channel Hi.

After reception, the receiver employs one of many MIMO processing algorithms (i.e.,
MIMO equalizers) to disentangle the S streams from the N received signals, and demod-
ulates the symbols to recover S (potentially errored) streams of bits. This can be hard
demodulation that simply outputs bits, or soft demodulation ( [50, 108: §5.3.1.3]) that includes a
confidence value for each decoded bit based on the amount of noise in the channel.

In the last block, the receiver deinterleaves and decodes the coded bits, and then de-
scrambles them to undo the transmit processing and recover the original bit stream. At this
point, IEEE 802.11n devices typically compute the checksum of the received data and if
correct, deliver the packet to the network stack on the host. This completes the description
of the most important operations in the sending of a packet from transmitter to receiver in
an 802.11n link.

I separated the link into the blocks shown to reflect the considerations that a practical
model must handle. The transmitter operation in the first block is completely specified
by the IEEE 802.11n standard and the selected rate and channel width. In contrast, the
transmitter has a wide choice of spatial mapping matrices to implement unspecified antenna
selection, transmit power control, and beamforming algorithms, among others. The receiver
can adapt its configuration in response to the channel, for instance by disabling certain
antennas and receive chains to save power. To process the received signals there are several
MIMO equalizers, demodulation techniques, and error correction decoders that trade off
complexity, cost, and performance, and the standard leaves these choices to the implementor.
A practical model must be general and flexible to support these many algorithmic and
implementation concerns.

4.2 Effective SNR Model Overview

Figure 4.2 gives an overview of my Effective SNR-based model for wireless links, designed
to handle the cases described in the previous section. At the left, the primary input to the



45

Subchannel 

BERs

Subchannel 

SNRs

True

CSI

Effective 

BER

Effective 

CSI

Effective 

SNR

Predicted 

Metric

TX Config
RX Config

Rate Config
RX Impl Rate Config

RX Impl
Rate Config

Rate Config

Figure 4.2: Overview of my Effective SNR-based model for wireless links. The model
takes as input a CSI measurement (the “true CSI”) along with a transmitter configura-
tion, receiver configuration, rate configuration, and some information on the receiver
implementation. The output is a prediction of how well the link will work using the
specified rate and device configurations, using a task-specific metric.

model is an RF measurement of the ground truth Channel State Information (CSI) for the
wireless link. In the context of MIMO-OFDM technology such as IEEE 802.11n, the CSI is a
set of NxMmatrices Hi, where each matrix describes the MIMO channel between theM
transmit and N receive antennas for one OFDM subcarrier.

The other inputs to the model are the configuration of the transmitter and receiver
devices, the rate configuration, and some information about the receiver implementation.
The final output of the model is a prediction of how well the link will work using the
specified rate and device configurations, using a task-specific metric. This model can flexibly
handle a wide variety of configurations: By varying the input transmitter, receiver, and rate
configurations, we can solve all the problems described in Chapter 3.

In the rest of this chapter, I explain each step of my model. To ease exposition, I start
with the core Effective Eb/N0 algorithm from Nanda and Rege [79], by which I convert
Subchannel SNRs to an Effective SNR. I then explain how a configuration algorithm can
use this Effective SNR to predict how well this configuration will work. I make the model
concrete in the context of IEEE 802.11n by explaining how to calculate the Subchannel SNRs
from the Effective CSI, which is the CSI that would be measured if the link operated in the
specified configuration. Next, I explain how to compute the Effective CSI as a function of
the ground truth CSI and the specified configuration, thus showing how this model can
support a variety of configuration problems. Finally, I conclude by discussing how this
model can be used in practical scenarios, including which side of the link performs the
computation and what information is communicated.

4.3 Computing Effective SNR from Subchannel SNRs

At the core of my model is the Effective Eb/N0 algorithm from Nanda and Rege [79], which
uses information about the fading properties of the individual subchannels in a link to
compute an SNR value for that link that is directly tied to its overall error rate. This process
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Variable Meaning

M Number of transmit antennas
N Number of receive antennas
S Number of spatial streams
T Number of OFDM subcarriers (tones)
H Channel state information (CSI) matrix
H ′ Effective CSI matrix
V Spatial mapping matrix

C = ST Number of subchannels
i, j Subchannel indices
ρ Signal-to-noise ratio (SNR)
β Bit error rate (BER)
k Number of bits per symbol

ρeff,βeff Effective SNR or BER
Vi, Hi Per-subcarrier spatial mapping or channel state matrix
m Modulation and coding scheme (MCS) index

M(c, ρeff,c) Function that computes the metric for configuration c
τm Effective SNR threshold for MCSm

Table 4.1: Table of notation used in this chapter.

Modulation Bits/Symbol (k) BERk(ρ)

BPSK 1 Q
(√

2ρ
)

QPSK 2 Q
(√
ρ
)

16-QAM 4 3
4Q
(√

ρ/5
)

64-QAM 6 7
12Q

(√
ρ/21

)
256-QAM∗ 8 15

32Q
(√

ρ/85
)

Table 4.2: Bit error rate as a function of the symbol SNR ρ for narrowband signals and
OFDM modulations. Here Q is the standard Q-function, the tail probability of the stan-
dard normal distribution. *IEEE 802.11ac will add 256-QAM.
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works as follows:

Suppose that we are given a set of Subchannel SNRs, indexed such that ρi corresponds
to the SNR for the ith subchannel, i ∈ 1 . . .C. The first step is to convert the Subchannel
SNRs to Subchannel BERs. In Table 4.2, I give the formulas that relate SNR to BER for the
modulations used in 802.11. These are adapted from textbook formulas [108: §3.7.1 and
§7.9.3.1] to use the SNR that is measured by wireless NICs instead of the Eb/N0 that is
traditionally used in textbooks. Because different modulations have distinct constellations,
each modulation has a slightly different error rate function identified as BERk, where k is
the number of bits encoded by one symbol. I use BER−1

k to denote the inverse mapping
from BER to SNR.

Because modern technologies use narrowband subchannels (such as OFDM subcarriers),
we can assume that these formulas are accurate with respect to subchannel SNR and BER,
unlike the packet-level SNR and BER for the entire link. Then we can compute the Effective
BER (denoted βeff,k)

βeff,k =
1
C

C∑
i

BERk(ρi). (4.1)

That is, the Effective BER is the average bit error rate across subchannels. The Effective SNR
(ρeff,k) is then defined as the SNR for a narrowband channel with that error rate:

ρeff,k = BER−1
k (βeff,k). (4.2)

Note that the BER mapping and hence Effective SNR depend on the modulation (k),
because different constellations have different densities (recall Figure 2.2). That is, unlike
the RSSI, fixing all parameters but rate for a particular 802.11n wireless channel will still
result in four different Effective SNR values, each one describing performance for each of
the modulations. (IEEE 802.11ac will have five.) In practice, the interesting regions for the
four Effective SNRs do not overlap because at a particular Effective SNR value only one
modulation will be near the transition from useless (BER ≈0.5) to lossless (BER ≈0). When
graphs in this paper are presented with an Effective SNR axis, I use all four values, each in
the appropriate SNR range.

Here, I use the Effective SNR ρeff,k to represent the Effective SNR for a particular
modulation scheme. To generalize to configuration problems beyond rate, I use ρeff,c to
denote the Effective SNR of a link in a particular configuration c. Note that c includes both
the choice of modulation as well as the other Wi-Fi physical layer parameters.
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Figure 4.3: Sample faded link showing the Packet SNR and Effective SNRs for different
modulations. BPSK has the lowest Effective SNR, but it needs less energy to decode.

Modulation ρeff (dB) BEReff

BPSK 9.7 8× 10−6

QPSK 10.9 2× 10−4

16-QAM 13.9 1%
64-QAM 16.1 5%

Table 4.3: Effective SNRs and Effective BERs for the example link in Figure 4.3.

4.3.1 Effective SNR Example

To make this description concrete, I present an Effective SNR calculation using this core
model for an example SISO 802.11n link in Figure 4.3. The subchannels of this single-antenna
link are simply the OFDM subcarriers, illustrated by the solid line. There is also one line
for the Packet SNR, i.e., the average SNR across all subchannels. The figure includes four
lines that each represent the Effective SNR for a different modulation. Table 4.3 shows the
Effective SNRs and Effective BERs for this link.

Note that the Effective SNRs are well below the Packet SNR, which is biased towards
the stronger subcarriers (note the logarithmic y-axis scale). This link does a poor job of
harnessing the received power because it is badly faded, so its Packet SNR is a poor predictor
of its rate. The simpler modulations have lower Effective SNRs than the denser modulations,
but also perform much better at low SNR (recall Figure 2.3).

4.3.2 Predicting Performance with Effective SNR

Recall that the model output is a prediction of how well the link will work in a partic-
ular configuration. Generically, this prediction can be generated using a metric function
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Algorithm 4.1 Threshold-based Effective SNR Metric: Mτ(c, ρeff,c)

1: Extract the modulation and coding schemem used in configuration c
2: if ρeff,c > τm then
3: return the bitrate of the link in configuration c // predict 100% packet reception
4: else
5: return 0 // for low Effective SNR, predict 0% packet reception
6: end if

M(c, ρeff,c). This function takes as input a configuration c and the Effective SNR of the link
in that configuration, and it outputs a task-specific prediction of how well the link can work.
I define this metric function in a generic way because the form of the output depends on
the objective function of the configuration algorithm.

Threshold-based Effective SNR Metric

In this thesis, I use the simple threshold-based metric function described in Algorithm 4.1.
In this approach, I assume that each configuration has an Effective SNR threshold that
separates lossy links (with low SNR values below the threshold) from links that deliver
packets reliably (with SNR values above the threshold):

works?c = (ρeff,c > τm). (4.3)

Note that the configuration c specifies transmitter, receiver, and rate configurations. These
in turn determine the Effective CSI, the modulation and coding schemem, and all the other
information used to calculate ρeff. The configuration-specific thresholds τm are exclusively
a function of MCS. The thresholds are determined by the receiver implementation, but are not
link- or device-dependent. We can choose τ in a variety of ways; I explain my method in
the next chapter. As in CHARM [55], this model can support different packet lengths with
different SNR thresholds.

For simplicity, this function assumes a sharp transition from 0% to 100% packet reception
of the link. In practice, this metric will over- or under-estimate performance for links within
the transition region that deliver packets at intermediate rates; in the next chapter, I evaluate
the width of this transition region to quantify this inaccuracy.

Alternative Effective SNR Metrics

There are many options for more advanced metrics. One extension is to map Effective SNR
to PRR in a continuous way instead of the binary classification of links I use. Another might
use these predicted PRRs in conjunction with knowledge of the 802.11 MAC protocols to
predict the link’s goodput taking into account protocol overheads, the expected overhead of
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backoff at a particular PRR, and the effects of 802.11n packet aggregation. A metric could
also account for the effects of proposed higher-layer coding schemes [33, 71, 87].

A metric can also have a different output than throughput. For instance, suppose the
metric can compute PRR and then MAC airtime for a particular configuration. Then, using
measurements of the power consumed by the chipset in different configurations [34], the
metric could compute the expected power consumption of each side of the link. These
estimates can be combined in many ways, such as to optimize power consumption across
devices or to minimize consumption for the battery-operated device if the other device is
plugged in.

I leave exploration of these more advanced Effective SNR metrics for future work. In
this thesis, the simple threshold-based metric (Algorithm 4.1) is sufficient to implement the
configuration algorithms studied and provides good performance, as my results will show.

4.3.3 A Note About Coding

The astute reader will notice that I did not mention error-correction in the calculations I laid
out above. One key decision that makes my model practical is that it is coding-agnostic.

I made this choice because coding interacts with the notion of Effective SNR in a way that
is difficult to analyze. One challenge is that the ability to correct bit errors depends on the
position of the errors in the data stream. To sidestep this problem, I rely on the interleaving
that randomizes the coded bits across subcarriers and spatial streams. Assuming perfect
interleaving and robust coding, bit errors in the stream should look no different from bit
errors for flat channels (but at a lower SNR). Thus the estimate of the Effective BER in
Equation 4.1 will accurately reflect the uncoded error performance of the link. In other
words, my model assumes that coding works—but does not care about the details.

Note that this procedure differs from the typical approach of simulation-based analy-
ses [57, 72, 82], which instead map the uncoded BER estimate such as I compute to a coded
BER estimate by means of a log-linear approximation parameterized by the receiver imple-
mentation. They then use this coded BER estimate and packet length to directly compute
the packet delivery rate of the link. But changing the coding parameters involves changing
the internals of the calculation, and with some implementations these parameters can be
different for different configurations. (I describe why in the next subsection.) In contrast,
all of these effects can be easily expressed, albeit approximately, as (perhaps modulation-
dependent) shifts in the Effective SNR thresholds. Thus I believe my method of thresholding
the Effective SNR is a better design point because it efficiently accommodates these varia-
tions.
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4.4 Modeling the Receiver: Computing Subchannel SNRs from Effective CSI

In the last section, I showed how the model of Nanda and Rege [79] can determine the
Effective SNR from a list of Subchannel SNRs. In this section, I explain how to compute the
Subchannel SNRs given the Effective Channel State Information of the link.

The Effective CSI is a NxS channel state matrix H ′, where each entry describes the gain
and phase of each spatial stream as measured at each receive antenna. The columns of the
Effective CSI represent spatial streams, not transmit antennas as in the CSI matrix H. From the
point of view of receiver processing the number of transmit antennas used is not relevant,
just how the transmitted streams are received after sender-side processing and propagation
through the RF channel. I discuss how to compute the Effective CSI in the next section.

Note that the IEEE 802.11 standards do not specify which algorithms the receiver uses to
process received signals. However, a small set of techniques are likely chosen in practice: op-
timal algorithms or near-optimal techniques that have known, good complexity/optimality
tradeoffs. My contact with Intel engineers and marketing documents from other chipset
manufacturers confirm that the techniques I present here are the ones used in practice.

Of course, which techniques the receiver might use to process the Effective CSI depends
on the dimensionality of the effective channel. In a SISO system, there is little processing
to be done, while MIMO systems that use spatial multiplexing and spatial diversity offer
lots of options. Hence, I frame my presentation of these techniques around the number of
streams and antennas available.

4.4.1 SISO Links: S = 1,N = 1

As in the example of Figure 4.3, the SNR of a 1x1 channel matrix is simply the power of the
single entry in the CSI matrix. There is one Subchannel SNR for each OFDM subcarrier:

ρi =
∣∣H ′i∣∣2 . (4.4)

4.4.2 SIMO Links: S = 1,N > 1

When there is a single stream and more than one receive antenna, there are two dominant
algorithms used. The simpler technique is antenna selection, in which the antenna with the
largest SNR is chosen, and then the SISO algorithm is used on that antenna’s signal. The
same antenna selection applies to all OFDM subcarriers.

ρi =
∣∣H ′i,â∣∣2 , where antenna â has maximal Packet SNR. (4.5)

Some older chipsets, such as the Intel PRO/Wireless 3945 [48: §3.5] and Atheros AR5007 [74]
use antenna selection by default.
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The optimal SIMO technique is maximal-ratio combining (MRC) [115], which combines the
multiple copies of the signal from the different receive antennas. The resulting subcarrier
SNR is simply the sum of the SNRs of the individual entries:

ρi =

N∑
a=1

∣∣H ′i,a∣∣2 . (4.6)

MRC requires more hardware than antenna selection—one receive chain per antenna,
instead of one receive chain total. But since spatial multiplexing techniques require multiple
receive chains, 802.11n chipsets already have the hardware necessary to perform MRC.
The additional computation is minimal, and the resulting gains are large. Production
documentation for Atheros (e.g., the AR6004 [8]) and Realtek (e.g., the RTL8192SU [93])
chipsets and the Intel 802.11n driver source code [49] confirms that they use MRC.

Devices with more antennas than receive chains can use hybrid selection-combining algo-
rithms. Such a device might first select the n < N antennas that have the strongest Packet
SNRs and then apply MRC to those.

4.4.3 MIMO Links: S > 1

When the transmitter uses spatial multiplexing, i.e. S > 1, the receiver uses a MIMO
equalizer to disentangle the streams from its N > S receive antennas. For a MIMO link,
there are a total of C = TS values for Subchannel SNRs, one per subcarrier (tone) per stream.
I denote these ρi,j where i is an index over tones and j an index over streams. There are
several possible techniques in use; here I discuss the two algorithms most likely to be used
in practice.

A Minimum Mean Square Error (MMSE) MIMO receiver is used by the Intel Wireless
Wi-Fi Link 5300 and perhaps other 802.11n devices. For a single stream, MMSE is optimal
and equivalent to MRC, and MMSE is near optimal for spatial multiplexing.

The SNR of the jth stream after MMSE processing for subcarrier i is given by

ρi,j =
1

Yjj
− 1, where Y =

(
(H ′i)

†H ′i + IS
)−1

(4.7)

for j ∈ [1,S] and SxS identity matrix IS [115]. The operator (·)† indicates the Hermitian, or
conjugate transpose of the input matrix.

The advantage of MMSE is that it performs well in most cases and has low computa-
tional cost, roughly the cost of matrix multiplication and inversion. An alternative is the
Maximum Likelihood (ML) decoder. This is an optimal decoder that uses channel estimates to
predict every possible received symbol, and then finds the most likely match. However, the
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ML decoder has added complexity that scales with the size of the constellation, i.e., is expo-
nential in the number of bits per symbol k. In the initial 802.11n chipsets, ML decoding was
considered too complex to be practical, but this outlook has recently changed. Today, Intel’s
IWL6300 (successor to the IWL5300 I use) uses ML decoding for the smaller constellations
for which it is practical. Atheros uses a “simplified maximum likelihood detector” [7, 8] for
all modulations that approximates ML performance but has lower complexity.

The task of estimating the per-stream SNR of the output from a maximum likelihood
decoder is non-trivial. Existing estimation techniques, such as the approximation by Redlich
et al. [94], have the same complexity as the full ML receiver, and are hence impractical for
software implementation (though they may be suitable for use if implemented in hardware).

Instead, I observe that maximum likelihood decoding can be approximated as a ≈3 dB
gain over MMSE for typical MIMO systems [65]. Thus, the practical solution I propose
for my model is to always compute Effective SNR estimates using MMSE, and instead
adapt the decision thresholds τm to reflect the use of ML decoding. This approximation is
imprecise—the gains of ML will vary depending on the particular channel—but allows the
model to flexibly handle many device implementations (even hybrid MMSE/ML such as in
the IWL6300). The error is likely to be small for most channels.

4.4.4 Summary

In this section, I explained how to determine the Subchannel SNRs given Effective CSI
matrices for Wi-Fi links. The SISO matrices give the Subchannel SNRs directly, and I assume
the use of MRC when modeling SIMO processing. For MIMO links, the model will always
use the MMSE formula given by Equation 4.7 to compute the Subchannel SNRs, though
some receivers may use ML instead. But since the difference between ML and MMSE is often
just a few dB, the model will assume MMSE and instead represent the gains from using ML
by having lower Effective SNR thresholds. I describe how the sender and receiver might
communicate these thresholds later in this chapter. Before doing so, I will next describe
the last component of my model needed to make application decisions over a space of
configurations.

4.5 Applications: Adapting CSI to Compute Effective CSI

Recall that for a given CSI measurement and a target configuration, the Effective CSI is the
channel state information that would be measured if the link operated in that configuration.
The last few sections have described how to compute the model output given the Effective
CSI; the final missing piece is to actually compute the Effective CSI (H ′). To compute H ′,
I adapt the CSI (H) to reflect the difference between the configuration in which H was
measured and the target configuration. Here, I explain how to perform this step for an
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illustrative set of configuration problems.

Antenna Selection. There areM columns andN rows in the CSI matrix H; each corresponds
to one transmit or receive antenna. To compute the Effective CSI that would be used under a
particular antenna selection, we simply pick the subset of rows and columns that correspond
to the desired antennas. Note that this includes both transmit antenna selection (e.g., when
S < M, pick the best S of the M transmit antennas to send with) and receive antenna
selection (e.g., whenN > S, turn off the least useful of the excess antennas in order to reduce
power consumption).

Channel Width Selection. In 802.11n, a full 40 MHz CSI measurement comprises 114 matri-
ces Hi. To implement channel width selection, we use only the Hi covered by the potential
channel. For the lower 20 MHz channel, we would use the matrices corresponding to
i ∈ [1, 56]; for the upper 20 MHz channel we would use the matrices for i ∈ [59, 114]. (Sub-
carriers 57 and 58 are not part of either 20 MHz channel because the 40 MHz channel does
not need the same guard band.) This method can also predict performance using 5 MHz or
10 MHz channels as in 802.11j or SampleWidth [21], and could support a potential future
version of 802.11 that allows the devices to use non-contiguous tones as in SWIFT [90].

Transmit Power Control. If the transmitter changes the amount of power it radiates, this
change will be reflected as simple scaling of the received CSI. Recall that each entry in H
represents an amplitude (also a phase), which has a quadratic relationship with transmit
power. Thus when the transmitter reduces the transmit power uniformly across subcarriers,
say by 3 dB (a factor of 2), we multiply each matrix by the square root of the power change,
in this example by

√
2. To model the effects of asymmetric power control across subchannels,

e.g., water filling across streams or subcarriers, we can apply scaling differently to different
parts of the channel matrix.

MCS (Rate) Selection. For any of the above transmitter and receiver configurations, my
model can predict whether a particular MCS will reliably deliver packets. The CSI matrix
may need to be slightly modified depending on the MCS, however. For instance, when using
multiple streams the total amount of power is generally kept constant, so the Effective CSI
must include a division of the transmit power across antennas. Similarly, some chipsets (e.g.,
IWL5300 and the Atheros-based Ubiquiti SR71-A [116]) are unable to send at full power
when using the highest modulations, because the peak-to-average power ratio (PAPR) is
higher than the transmit amplifier(s) can support. For these chipsets, the Effective CSI must
be scaled to compensate for the reduced transmit power when predicting the performance
of the relevant modulations.

Spatial Mapping. Spatial mapping algorithms determine how the different transmit streams
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are mapped to transmit antennas. These are implemented by the MxS matrices Vi, such
that the Effective SNR is

H ′i = HiVi. (4.8)

I discuss the four types of spatial mapping techniques from the simplest to the most general.

• In direct mapping, the transmitter maps each spatial stream directly to one of S antennas;
excess antennas go unused. After choosing the appropriate rows of H as described above
under transmit antenna selection, the matrix V is the identity matrix IS. We can combine
transmit antenna selection and direct mapping using aMxSmatrix V consisting of zeros
except for the S entries in different rows and columns that indicate which streams are
mapped to which antennas. For S = 2 and M = 3, a direct mapping matrix using the
first and third antennas would be

V =

1 0
0 0
0 1

 . (Combined 3x2 TX Antenna Selection and Direct Mapping)

• In indirect mapping, the S streams are mapped to S antennas but in such a way as to be
spread over multiple antennas. For instance, the IWL5300 uses the following indirect
mapping for 3 streams and 20 MHz channels:

V =

 e−i2π/16 e−2iπ/(80/33) e−2iπ/(80/3)

e−i2π/(80/23) e−2iπ/(48/13) e−2iπ/(240/13)

e−i2π/(80/13) e−2iπ/(240/37) e−2iπ/(48/13)

 . (IWL5300 3x3)

Atheros uses Walsh (also called Hadamard) spreading. The 2x2 mapping is:

V =

(
1 1
1 −1

)
. (Atheros 2x2)

• When using spatial expansion, S spatial streams are mapped toM > S transmit antennas.
Here, V is the product of an expansion matrix and one of the direct or indirect mapping
matrices above. I show the case of S = 2 and M = 3 using a sample expansion matrix
from the 802.11n standard:

V = V ′
√

2
3

1 0
0 1
1 0

 , (3x2 Spatial Expansion)
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where V ′ is a direct or indirect mapping matrix. The
√

2/3 factor above represents the
even spreading of the power from 2 streams across 3 antennas.

• Finally, beamforming is a general technique for mapping streams to antennas. Beamform-
ing can be thought of as a synthesis of indirect mapping, spatial expansion (if applicable)
and transmit power control. The distinctive feature of beamforming compared with the
above is that it is channel-aware; in other words, the beamforming matrix is chosen to
improve performance based on the known current channel H. This means that beamform-
ing can use different mapping matrices Vi for each subcarrier, unlike the prior techniques
which are applied uniformly across tones. There are a large variety of techniques that
use beamforming to improve the channel, but all can be represented in matrix form.

Higher-level Tasks. To solve configuration problems that require the composition of multi-
ple measurements, such as channel selection, path selection, or access point selection, we
can repeat the steps above. For instance, two devices that wish to find the operating channel
on which their link is fastest need only frequency-hop in unison and take CSI measurements
for each frequency. They can then use the model to predict the achievable bitrate of each
measured operating channel and select the fastest.

4.6 Protocol Details

In this section I make concrete the actual protocols and algorithms by which my Effective
SNR model can be used. Decisions about which configuration to choose can be made by
either end of the link, and each has its advantages. I begin by presenting an algorithmic
overview of my model and the set of information needed to compute it. I then discuss
transmit-side and receiver-side procedures for calculating the Effective SNR, including
what information needs to be communicated between endpoints (and when that exchange
happens) for these approaches to work.

4.6.1 Protocol Overview

I present the skeleton of a procedure to use my Effective SNR model as Algorithm 4.2.
We can define a configuration problem as a set of configurations under consideration (C)
and some metric (M) that enables us to choose between configurations.

Consider the example problem of rate selection over a three-antenna 802.11n link. For this
application, we define C to be the 24 modulation and coding scheme (MCS) combinations
that span all SIMO, MIMO2, and MIMO3 rates. (This assumes only 20 MHz channels and
that the receiver is fixed to use all three antennas.) For metric M, we use the threshold-based
metric given in Algorithm 4.1. Then Algorithm 4.2 will use my Effective SNR procedure on
a measured 3x3 channel matrix H and return the configuration predicted to be the fastest.
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Algorithm 4.2 EFFECTIVE SNR ALGORITHM SKELETON

1: Define an application by a set of configurations C and a metric M

2: Measure the CSI H, covering the subchannels used in all configurations
3: for configuration ci ∈ C do
4: Use the Effective SNR model and H to determine ρeff,c // Note that ci specifies a choice

of rate, sender configuration (including channel), and receiver configuration.
5: Set metricmi to M(ci, ρeff,ci)
6: end for
7: return the configuration ci with the best metricmi

Note that Algorithm 4.2 uses the brute-force approach of checking all configurations to
find the best one. For extremely large search spaces, it may be necessary to prune the search
space if computation time dominates the rate at which the channel changes. However note
that this inflection point comes for much larger spaces than the probe-based approach, since
Effective SNR can predict the performance of many configurations using a single packet
preamble, while probe-based algorithms must send one or more full-length packets to test a
configuration.

In order to actually run this procedure, three pieces of information are necessary in
practice:

1. Up-to-date CSI measurements including all relevant subchannels.

2. The receiver’s MCS-specific Effective SNR thresholds.

3. Knowledge of how to compute the Effective CSI H ′ from the CSI H.

A challenge is that this information is spread across the transmitter and receiver. In particular,
CSI measurements are naturally measured at the receiver in the course of receiving 802.11n
packets, and I envision that the receiver’s Effective SNR thresholds will be programmed in
at the factory since they are fixed and independent of channel conditions. At the same time,
computing the Effective CSI requires knowledge of transmitter behavior, including spatial
mapping matrices as well as any implementation-specific oddities. The latter can be quite
broadly defined, such as Intel’s reduction of transmit power by up to 5 dB for the highest
64-QAM single-stream encodings to compensate for amplifier non-linearities. Finally, which
endpoint applies the result of the computation depends on the application in mind. Often
the adjustment will be at the transmitter side, such as choice of rate, but some applications,
such as receive antenna selection, are applied at the receiver.

In the next few subsections, I first discuss how CSI is obtained, as this is the main
run-time measurement needed to run this algorithm. I then describe the transmitter- and
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receiver-side ways to implement Algorithm 4.2 and the tradeoffs of the various approaches.
The primary tradeoff is between the amount of data shared (because the party performing
the calculation needs up-to-date CSI) and protocol complexity.

4.6.2 CSI Collection

As with RSSI, receivers gather channel state information automatically while receiving a
packet; the OFDM and MIMO equalizers described in Section 4.4 fundamentally rely on
CSI to decode the received signal. This passive collection of CSI via overheard transmissions
suffices for most applications, such as rate selection. When a more comprehensive CSI
measurement is needed, the transmitter can send a sounding packet [45: §20.3.13.1] at a
wider bandwidth or using more streams to probe the extra dimensions. For the special case
of measuring additional spatial streams, 802.11n includes a mechanism to send a modified
packet with extension spatial streams [45: §20.3.9.4.6] such that the receiver can measure the
full channel during the preamble but that does not change the rate or number of streams
used for the data portion.

4.6.3 Transmitter-side Computation

The transmitter seems to be a natural place to perform these computations, as most configu-
ration points are determined by transmitter configurations. To do so, it needs an up-to-date
CSI measurement as well as the receiver’s MCS thresholds. The latter is easy: Since the
thresholds are fixed for a particular model of NIC, they can be shared by the receiver once,
e.g., during association.

The transmitter can obtain CSI via feedback or estimate it implicitly from the reverse
path. When the receiver feeds CSI back to the transmitter, this process adds latency and
reduces airtime efficiency. 802.11n includes mechanisms to limit these effects via rapid
feedback protocols [45: §9.19.2] and compressed CSI feedback formats [45: §20.3.12.2.5].
Additionally, my measurements taken in conjunction with experimenters at Intel show that
in slow-fading channels, such as static nodes with indoor mobility, CSI estimates are valid
for a few hundred milliseconds [85] and this may require less frequent feedback.

Alternatively, the transmitter can attempt to estimate the CSI implicitly when receiving
packets, such as ACKs, sent by the receiver. This is the standard approach taken in Packet
SNR-based schemes such as CHARM [55] proposed for single-antenna 802.11a systems.
For systems with multiple antennas, like 802.11n, this approach mandates that the receiver
inform the transmitter of its spatial mapping matrices and use all its antennas to send
these packets. Another approach is for the receiver to send ACKs using fewer streams,
but alternate which antenna set it uses so that the transmitter can gradually build up the
full CSI; this process is called CSI Sampling and Fusion [25]. The use of implicit feedback
also requires devices to use the 802.11n calibration process to compensate for hardware
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differences in the measured transmit and receive chains and those that will be used when
the two devices swap roles. Some receivers, such as the Intel IWL5100, have more receive
antennas than transmit chains and cannot send on all antennas. For these devices, implicit
feedback would simply not work.

Finally, the implicit feedback approach induces all the problems of receiver-side com-
putation (see below) with few of the benefits, and I do not find it to be practical. Instead
choosing to make decisions at the transmit side of the link, I recommend that the transmitter
obtain CSI feedback explicitly when making an Effective SNR decision.

4.6.4 Receiver-side Computation

The other approach is for the receiver to perform the computations and make the application
decisions, feeding them back to the transmitter when necessary. This obviates sending
CSI and speeds up the protocols, but instead requires that the receiver understand the
transmitter’s behavior and capabilities.

Today, the transmitter shares some of these details, such as number of transmit antennas
and whether it supports optional 802.11n features, with the receiver during association.
But the standard does not include a method by which a transmitter can share its spatial
mapping matrices, and it is not immediately clear that this would sufficiently capture all
implementation artifacts such as those described above.

The other drawback to this approach is that it complicates receiver algorithms. For
instance, if the transmitter is an access point and the client a cell phone, the former device
is likely to have much more sophisticated silicon. We have seen this today as many 802.11
manufacturers have targeted systems with asymmetric capabilities such that the access
point shoulders all the computation load, reducing the complexity and hence cost of the
client which need only support basic functionality. The receiver-side approach requires that
the receiver shoulder the computational load of running the model and making decisions;
in contrast for the transmitter-side approach it must only support CSI feedback.

Still, I believe that the receiver-side approach is fundamentally the best. This approach
has the primary advantage of putting the computation near the data, so that rather than
feeding back the full CSI measurement to the transmitter, the receiver need only send the
application decision over the air. This is similar to the approach taken by RBAR [43], and
support for this has been added to 802.11 with the new 802.11n Link Adaptation Control
field [45: §7.1.3.5a] that can embed feedback in packet headers, including ACKs, to directly
request a particular MCS, select transmit antennas, or request a particular beamforming (or
other spatial mapping) matrix.

To make the receiver-side algorithm work best, I suggest a simple new contract be added
to 802.11n as a standard requirement. Since today transmitters may use fundamentally
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different spatial mapping matrices for different numbers of streams, it is hard to compute
the Effective CSI for a different number of streams. Indeed, the Intel IWL5300 uses spatial
mapping matrices such that the 2-stream CSI bears no obvious relation to the 3-stream
CSI without knowledge of the possible mappings, and uses different matrices for 20 MHz
and 40 MHz channels. In my experiments using the IWL5300, I assumed that the receiver
knows the spatial mapping matrices a priori, but sharing the full extent of these mappings
is hard to fit into a clean protocol. As a cleaner solution, I propose that transmitter spatial
mapping matrices be restricted such that when a receiver subsets a large (e.g., MIMO3)
CSI measurement to simulate a smaller (e.g., MIMO2) configuration, the result indeed
corresponds to the channel that would be measured if the transmitter used that mode. I
think this new contract would best resolve the situation without greatly compromising
transmitter performance or flexibility.

4.6.5 Summary

In this section, I discussed some practical details of implementing my Effective SNR-based
decision procedure. When comparing the transmitter-side and receiver-side options for
implementing this functionality, I concluded that receiver-side computation likely represents
the best tradeoff, because it has the benefit of low overhead without compromising on
flexibility, accuracy, or agility.

In certain situations, such as when selecting beamforming matrices, the decision may be
best made at the transmitter, which better understands the limitations of its own hardware.
And for multiple links to coordinate, CSI measurements may need to be shared in a local
neighborhood. One example of a system that does this lightweight local sharing in order to
achieve better spatial reuse is IAC [31].

4.7 Comparison to Other Techniques

I conclude this chapter by comparing my Effective SNR to other techniques that use physical
layer or other low-level information to predict the performance of a wireless link. I compare
algorithms along two axes: (1) their applicability to many configuration problems, and (2)
their efficiency in terms of overheads and responsiveness.

4.7.1 Accuracy

Table 4.4 summarizes the comparison between Effective SNR and other recent algorithms
that aim to predict the performance of a wireless link. The results show that Effective SNR
can handle a much broader problem space because it looks at the raw channel details,
while other algorithms primarily apply only to single-stream links with fixed antennas and
transmit power.
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Algorithm 802.11a/b/g
802.11n Antenna

TX Power
Channel Real Wi-Fi

(MIMO) Selection Width Devices

Packet SNR ? X
SoftRate [120] X

AccuRate [103] X X X
EEC [22] X X

Effective SNR X X X X X X

Table 4.4: A comparison of Effective SNR to other recent algorithms that purport to pre-
dict the performance of a wireless link. Effective SNR can predict packet delivery in the
largest space because it looks at the underlying subchannel response, whereas the other
techniques mostly apply to single-stream links with fixed antennas and transmit power.

Algorithm Measurement
Communication

Compute
Response

Overhead Time

Probe-based Multiple packet loss rate None Low High
Packet SNR Preamble Low Low High

SoftRate [120] A few full symbols Low Low Low
AccuRate [103] Preamble Low Very High High

EEC [22] Full packet Low High Medium

Effective SNR Preamble
Low (RX)

Medium Low
Medium (TX)

Table 4.5: Comparing overheads and response times of Effective SNR and other algo-
rithms. In addition to being more flexible and accurate than the other algorithms (Ta-
ble 4.4), Effective SNR has low measurement and communication overheads, little com-
putational cost, and low response time. This matches the best aspects of the other algo-
rithms.
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As I presented in the previous section, Packet SNR based on RSSI is available in today’s
devices, but is does not accurately predict performance for 802.11a/g due to its inability
to capture frequency-selective fading; the use of MIMO in 802.11n only exacerbates this
deficiency.

SoftRate [120] and EEC [22] both use information from the error correction hardware to
accurately measure the Effective BER of the current configuration. They have been shown to
work well for rate selection using adjacent 802.11a/b/g rates, but they cannot predict the
performance of other configurations such as using different numbers of antennas.

AccuRate [103] uses the measured receive error vectors as input to a full channel simu-
lator; like my model this procedure can estimate the Effective BER of all modulations in
the current configuration. However, these computations are computationally expensive
and do not hold across antenna modes. One case where it may work is changing channel
width, by only using the error vectors for the desired subcarriers. AccuRate may also be
able to support transmit power control: I believe this can be approximated by scaling the
error vectors, if the hardware distortion does not change across transmit powers. However,
neither of these tasks were explored by the authors.

In contrast, Effective SNR applies in more settings than the other techniques because its
computations are aware of the low-level physical-layer effects of the RF channel, including
frequency- and spatially-selective fading. My model is broadly compatible with 802.11n
and requires no hardware changes.

4.7.2 Overheads and Response Time

Table 4.5 summarizes my qualitative comparison of these algorithms in terms of their
practical overheads and the achievable response times.

Packet SNR-based algorithms, AccuRate, and Effective SNR all require only a packet
preamble to record their measurements. SoftRate, which uses the output of the error cor-
rection blocks to estimate Effective BER, requires a packet that contains at least a few
MIMO-OFDM symbols that fully utilize the available subchannels. EEC requires slightly
more bits to accurately estimate the BER (around a full packet), and the standard probe-
based approaches today require multiple full-length packet probes to estimate the loss rate
of a particular configuration.

None of the schemes have much additional communication overhead beyond the exist-
ing 802.11 protocol, feeding back only configuration decisions or concise metrics such as
SNR or BER estimates. When using Effective SNR to make decisions that require transmit-
side computation (which other algorithms cannot handle at all) Effective SNR must feed
CSI back to the transmitter, though the feedback can be compressed and may only need to
be sent periodically.
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In terms of computation, Packet SNR and SoftRate require very little, either directly
feeding back the hardware’s estimate to the other side of the link or performing a simple
local threshold test. Today’s probe-based algorithms require a small amount of computation
to update loss rate estimates. Among the rest, AccuRate has such a large overhead as to
make it impractical, because it requires a full wireless channel simulator of a full-length
packet in order to compute its output. EEC’s custom codes require a medium amount (about
250µs) of computation [22], which is longer than a packet sent at 58.5 Mbps but still quicker
than a full 4 ms packet batch. In contrast, I will show in the next chapter that the Effective
SNR computations for rate selection among 24 MCS combinations can be computed in
under 4µs, around the time for a single MIMO-OFDM symbol. Both EEC and Effective
SNR computations would be faster if implemented in hardware instead of in software on a
desktop computer, but Effective SNR can already be calculated fast enough for real-time
adaptation in fast-changing channels.

Finally, I compare the algorithms on the basis of their responsiveness. The algorithms
that are more accurate—SoftRate, AccuRate, EEC, and Effective SNR—can respond quickly
to changing conditions. However, this applies only to those configurations they can solve
(see Table 4.4), and the response time of AccuRate and EEC are limited by their computation
time. In contrast, because probe-based algorithms must search a large space and Packet
SNR-based algorithms require online training of SNR thresholds, they cannot respond in an
agile way in mobile environments.

4.8 Summary

This section has presented my Effective SNR model and how to use it. The key idea is to
use CSI measurements made by the receiver from a single packet preamble to efficiently
infer how well other configurations would work. When used with my Effective SNR model,
the CSI can easily and efficiently handle a wide range of transmitter, receiver, and rate
configurations. My model provides a flexible API to support many different configuration
tasks and includes considerations for real receivers with practical implementations operating
over real wireless channels.

I concluded with a comparison of my Effective SNR-based model to other techniques
with similar goals. Effective SNR can handle a much larger problem space than comparable
algorithms, because my model is able to capture the underlying RF details of the MIMO-
OFDM channel, rather than high-level observations of the channel, packet delivery, or error
rates. In terms of overheads and response time, Effective SNR comes close to matching the
best of the other algorithms, with the upside of having wider applicability to new Wi-Fi
technologies.

Of course, I have not yet shown that my Effective SNR model is accurate. In order to
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understand whether this is the case, I built a prototype implementation of my model using
a commercial Intel wireless chipset. In the next chapter I describe this implementation. I use
this implementation in the rest of this thesis to demonstrate that my Effective SNR model
works well and supports a wide space of applications.
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Chapter 5

EXPERIMENTAL PLATFORM

In this chapter, I describe my experimental 802.11n platform, which comprises a proto-
type implementation of a CSI measurement tool based on commodity Intel Wi-Fi chipsets
and experimental 802.11n wireless testbeds in two indoor office environments. This ex-
perimental setup is the foundation for the experimental results in the remainder of my
thesis.

5.1 Experimental 802.11n Wireless Testbeds

I conducted experiments in two 802.11n stationary wireless testbeds. (In addition to these
two stationary testbeds, I use three laptops for mobile experiments; I describe their configu-
ration in the next section.)

The first testbed, pictured in Figure 5.1(a), contained 10 nodes spread over one floor of
Intel Labs Seattle covering 8,100 square feet. In the second testbed, I deployed 24 nodes
across 3 floors in UW CSE (Figure 5.1(b)), where each floor measures approximately 20,000
square feet in size. Both locations are indoor office buildings, the former mostly a wide open
area with cubicles and a few conference rooms, the latter consisting primarily of 5-person
offices.

Each node runs the experimental platform described below in Section 5.3. In both
testbeds, I placed the nodes to ensure a large number of links between them, a variety
of distances between nodes, and diverse scattering characteristics. Devices are located on
desktops, under tables, on a cart in the server room, and even mounted on the ceiling.
The UW CSE testbed also includes a more dense concentration of nodes in one area of the
building (pictured in the upper right corner of Figure 5.1(b)), making it a highly diverse
testbed and increasing the challenge of configuration.

5.2 Node Configuration

Each node is a stationary desktop (Figure 5.2) or portable laptop (Figure 5.3) equipped with
an Intel 802.11n wireless network interface card (NIC) that supports three antennas. As the
antenna geometry of a multi-antenna device is important for spatial diversity, I mount the
three antennas per node on custom stands. Each antenna achieves 5 dBi gain for the 2.4 GHz
band, and 3 dBi for the 5 GHz band.
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50 ft
(a) The testbed at Intel Labs Seattle contained
10 nodes spread over 8,100 square feet.

100 ft

(b) The testbed at the UW CSE comprises 24 nodes spread
over 3 floors (indicated by color) of 20,000 square feet.

Figure 5.1: My two indoor 802.11n testbeds. In both testbeds, the nodes are placed to
ensure a large number of links between them, a variety of distances between nodes,
and diverse scattering characteristics.
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Figure 5.2: The antenna stand I use to achieve consistent spatial geometry for desktop
machines. It supports circular and linear arrays of two or three antennas with the correct
λ/2 separation at either 2.4 GHz or 5 GHz.

Figure 5.3: One of the three laptops, pictured here, includes a custom antenna mount for
a 2.4 GHz linear array.

The desktop stands (Figure 5.2) allow for a circular array (using ports ABC) or a linear
array of two or three (AB2 and optionally center) antennas, with antenna separations of
half the wavelength for either 2.4 GHz Channel 6 (λ/2 = 6.15 cm) or 5 GHz Channel 48
(λ/2 = 2.86 cm). In desktop experiments in this paper, I use the circular three-antenna
configuration for the 2.4 GHz band. It is robust and suited to dual-band chips that need the
wider 2.4 GHz antenna separation.

The three laptops use three different antenna configurations. One laptop has all three
antennas embedded internally like in a commercial laptop deployment; one laptop uses
the same antenna stand as the desktop machines to mimic their behavior in portable
experiments. The third laptop, pictured in Figure 5.3, includes a custom antenna mount for
a 2.4 GHz linear array. For mobile experiments, I use the laptop with internal antennas; the
other two are used as portable (but not mobile) testbed nodes to supplement the stationary
testbed.
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Figure 5.4: The Intel Wireless Wi-Fi Link 5300. This 802.11n device has three trans-
mit/receive antennas, operates on both 2.4 GHz and 5 GHz frequency bands, and sup-
ports up to three spatial streams for a maximum bitrate of 450 Mbps.

5.3 Node Software: 802.11n CSI Tool and Research Platform

In conjunction with Intel Labs Seattle, I built an experimental 802.11n platform that uses the
Intel Wi-Fi Wireless Link 5300 (IWL5300) 802.11a/b/g/n network cards (Figure 5.4). These
802.11n MIMO chipsets have three antennas and support many new features of 802.11n. I
modified the closed-source firmware and open-source iwlwifi driver for Linux to add a
number of experimental features and, crucially, to measure the 802.11n CSI.

802.11n CSI Measurement. The channel sounding mechanism added in 802.11n defines
a management frame used to report the CSI from the receiver of a frame back to the
transmitter. This mechanism is intended for calibration or to inform transmit beamforming,
and I co-opt it for my experiments. In standard operation, the CSI is reported only when the
sounding procedure is initiated by the transmitter, though the receiver measures CSI for
every frame in order to receive the packet. In my tool, I configure the NIC with a debug
mode to compute this feedback packet for every received frame, rather than just during
sounding. For correctly received packets, the firmware will send the measured CSI up to
the driver on the receiving node, which forwards it to a userspace application that can log
or process the CSI.

In my tool, CSI feedback is not returned to the transmitter by default. Instead, the
userspace application that processes CSI can optionally generate feedback (potentially
including Effective SNR or rate selection information rather than simply the measured CSI)
and return it to the transmitter.

The IWL5300 provides CSI in a format that reports the channel matrices for 30 subcarrier
groups, which is about one group for every 2 subcarriers at 20 MHz or every 4 subcarriers
at 40 MHz. Each channel matrix entry is a complex number, with signed 8-bit resolution
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each for the real and imaginary parts. It specifies the gain and phase of the spatial path
between a single transmit-receive antenna pair. Intel’s implementation of the 802.11n CSI
does not include per-subcarrier noise measurements, so I assume the noise floor is uniform
across all subcarriers to compute SNRs. This is consistent with white noise observed on
other OFDM platforms [89].

RSSI Measurement. For each received packet the NIC reports the traditional metrics of
RSSI per receive antenna, noise floor and the setting on the automatic gain controlled (AGC)
amplifier. These combine to define the per-receive-chain Packet SNR (ρpacket):

ρpacket = RSSI (dBm) − Noise (dBm) − AGC (dB) (5.1)

The IWL5300 calculates the quantities RSSI and Noise as the respective sums of average
signal strength and average error vector magnitude in each OFDM subcarrier [49]. This is
exactly the traditional definition of SNR applied to OFDM.

Note that with multiple receive antennas, there is a different RSSI and hence a different
Packet SNR for each antenna. As described below in Section 5.4.1, I compute the Packet
SNR for the link by summing the Packet SNR of the antennas.

Transmit Power Control. I modified the driver and firmware to enable transmit power
variation. With these changes, I can vary the transmit power level from −10 dBm (100µW)
to +16 dBm (40 mW) in steps of 0.5 dB. For all modulations, the IWL5300 divides power
equally across transmit antennas. Additionally, the IWL5300 reduces the transmit power
slightly when using the highest single-stream rates to avoid distortions caused by passing
64-QAM symbols with high peak-to-average power ratio through the transmit amplifier.

Rapid Rate Variation. In normal operation, the IWL5300 decouples queuing packets for
transmission from selecting rates for these packets, since queues must be kept large to
take advantage of 802.11n block transmissions. This makes it difficult to control the rate at
which individual packets are transmitted. I modified the firmware and driver to support
the transmission of individual packets at predetermined rates, and added driver-level code
to rapidly iterate through a user-configurable set of available rates.

Userspace Connector. I used the Linux kernel connector framework to implement a
low-latency socket-based communication channel between the kernel driver and userspace
utilities. This enables userspace utilities to log CSI and other output from the driver, and to
send messages that adapt behavior of either end of the link online, e.g., by changing the
currently selected rate or antennas or adjusting the transmit power level.

Publicly Released Tool. I have publicly released the experimental platform and CSI collec-
tion tool in the form of open source drivers, userspace utilities, MATLAB data processing
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code, and binary firmware image [37]. At the time of writing, I am aware many users of
the tool: 20 universities in 7 countries, multiple research and product groups within Intel,
one industrial research lab, and one startup. The users of my tool have published at least 7
papers [13, 25, 32, 85, 100, 102, 124].

5.4 Computing 802.11n SNR and Effective SNR using IWL5300 Measurements

In the rest of this thesis, I use measurements from my experimental platform to evaluate
how well Effective SNR (and other algorithms) work for real 802.11n wireless channels. In
most experiments, I computed the packet reception rate (PRR), Packet SNR, and Effective
SNRs for all the measured configurations. The packet reception rate is easy to compute by
simply counting the number of correctly received frames compared to the number sent.
The rest of this section describes practical considerations when computing Packet SNR and
Effective SNR values.

5.4.1 Processing Multiple RSSIs to Compute Packet SNR

When receiving a transmission with multiple antennas, there is one RSSI value per antenna;
how should these measurements be combined into a single SNR value for the link? As
described above, I first convert the per-antenna RSSI and noise measurements to SNRs
(Equation 5.1) and then sum the SNRs. This is a straightforward choice for a single spatial
stream as it corresponds to receiver processing using maximal-ratio combining (Equa-
tion 4.6). It is also reasonable for 2- and 3-stream MIMO because the symbols carried on
different spatial streams are interleaved coded bits [45].

5.4.2 Processing CSIs to Compute Effective SNRs

The 802.11n standard mandates that CSI measurements, which are stored as matrices of 8-bit
complex numbers indicating gain and phase of each subchannel, include a per-subcarrier
SNR reference that enables the grounding of each per-subcarrier channel matrix, such that
each entry in the CSI can be treated as a magnitude relative to the noise floor. It is under
this model that the equations I presented in Chapter 4 hold.

In attempting to use the measured CSI from the Intel NICs, I discovered a practical
issue that needed to be taken into account: Quantization error. This issue is a fundamental
problem that applies to all uses of CSI in the 802.11n standard. Consider a very strong link,
say with a signal-to-noise ratio of 50 dB. Most actual receiver processing occurs after this
signal has been digitized by the analog-to-digital converter (ADC) at each receive chain; this
conversion from analog to digital cannot be perfect, and thus induces quantization error
in the digital signal. For instance, a 12-bit ADC can represent signal levels from −2048 to
+2047, with an error up to ±0.5. Note that the analog gain control (AGC) hardware on the
chip aims to amplify the received analog signal to fully utilize the ADC range.



71

An error of ±0.5 in a measured magnitude of up to 2048 corresponds to a quantization
error of about −72 dB. Roughly, each bit that the ADC outputs gives a 6 dB reduction in
quantization error, because it halves the relative error in magnitude, dividing the power of
that error by a factor of 4, i.e., 6 dB.

How does quantization error compare to the noise floor? The answer is that it depends
on the strength of the link and the ADC output. For the link above with an SNR of 50 dB,
a 12-bit ADC corresponds to a quantization error 72 dB below the signal strength, hence
22 dB below the noise floor. This is essentially no additional error at all. In contrast, a 6-bit
ADC would cause quantization error 36 dB below the signal strength, which is 25× larger
than noise power for this very strong link! So, in some cases it can be important to take
quantization error into account when using CSI measurements.

My results later in the thesis show that accounting for quantization error indeed im-
proves the accuracy of Effective SNR predictions considerably. I achieved the best results
when I assumed that the IWL5300 NIC in my testbed used a 6-bit ADC.

5.4.3 Computing Effective SNR

Taking into account quantization error, I used the processed and corrected CSI1 to compute
Effective SNR values for links in my testbed according to the model described in Chapter 4.
I parameterized the model with known properties of the Intel IWL5300 devices: They use
minimum mean square error (MMSE) MIMO equalizers, and have known, fixed spatial
mapping matrices that I detail in the tool source code [36: matlab/sm_matrices.m].
These are the CSI measurements I use in the remainder of this thesis.

5.5 Summary

This chapter described my 802.11n experimental platform and CSI measurement tool, and
detailed a number of practical considerations that are important when computing Packet
SNR and Effective SNR values on real hardware. In the rest of this thesis, I use these
measurements to evaluate whether my Effective SNR model is accurate and how well it
works relative to other algorithms for a variety of configuration problems.

1 A second issue is an implementation artifact of the way that the Intel chip reports channel state information.
The SNR reference is missing from each subcarrier’s CSI matrix, and instead all matrices are normalized to an
unknown reference. I determined via trial-and-error that this reference value is the total RSSI and developed
a procedure to normalize it [36: matlab/get_scaled_csi.m].
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Chapter 6

EVALUATING EFFECTIVE SNR FOR MIMO-OFDM CHANNELS

In this chapter, I experimentally evaluate how well my Effective SNR model predicts
packet delivery for 802.11n wireless links.

To do so, I use my CSI measurement tool to gather a wide range of channel and perfor-
mance information across 200 wireless links in both testbeds. This captures a wide variety
of fading environments, from line-of-sight links in the same room to links between nodes in
different rooms with RF barriers and reflectors spread around and between them. I use this
data to evaluate the accuracy of predictions made using Packet SNR and Effective SNR.

The primary study in this chapter determines how accurately Effective SNR predicts
whether packets will be delivered using different modulation and coding schemes. The goal
is that for every modulation and coding scheme (MCS), a clear Effective SNR threshold
separates those links that do not deliver packets at that rate from those that do, and thus
that my model is accurate for practical links. Using these thresholds, I determine how well
Effective SNR can identify the MCS with the highest throughput. I also compare how well
Packet SNR works when used in the same way.

I next consider how well my model enables predictions about the effects of transmit
power control on rate. This joint optimization problem highlights my model’s flexibility. I
conclude this chapter by evaluating the resilience of my Effective SNR system to interference,
so that it can still be used to make predictions in contested wireless environments.

Combined, these three studies lay the foundation for showing that Effective SNR is
accurate, flexible, and practical.

6.1 Experimental Data

I measured packet delivery over a 20 MHz channel on my two 802.11n testbeds, using links
with four different antenna configurations:

1. The SISO configuration uses a single antenna at each node. This configuration corre-
sponds to 802.11a.

2. The SIMO configuration uses a single transmit antenna but three receive antennas.
This is an 802.11a/g/n configuration that uses spatial diversity techniques.

3. The MIMO2 configuration uses two spatial streams and three receive antennas. This
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employs both 802.11n techniques of spatial multiplexing and spatial diversity.

4. The MIMO3 configuration uses three antennas at each node to send and receive three
spatial streams. This configuration uses spatial multiplexing but does not benefit from
spatial diversity.

For each of these configurations, I measured the packet delivery for each link using
each MCS, at each transmit power level between −10 dBm and +16 dBm in steps of 2 dB.
I sent 1,500-byte packets as constant bit-rate UDP traffic generated by iperf at 2 Mbps
for 5 seconds, about 860 packets total. The receiver also recorded the CSI and per-antenna
RSSIs and noise floors to measure the RF channel for each correctly received packet. In
these experiments, I turned off 802.11’s link layer retransmissions in order to observe the
underlying packet delivery rate. The experiments were conducted at night on unused 802.11
channels in order to minimize the effects of environmental movement and RF interference
on these results.

The above tested across 200 links, 26 dB of transmit power, four antenna configurations
ranging from SISO to MIMO3, and 8 MCS values per configuration. This covers all of the
key variables needed to implement and evaluate my Effective SNR model.

6.2 Packet Delivery with Effective SNR

The first study in this chapter aims to understand whether Effective SNR is a good metric,
i.e., whether it is an accurate predictor of packet delivery. In this section, I evaluate the
model in three ways. The first is via the transition window, i.e., the SNR regime in which
packet delivery for all links goes from near-zero to near-perfect. We saw in Chapter 3 that
this transition occurs rapidly for a wired link (Figure 3.7), but occurs over a wide range for
wireless links (Figure 3.8) when using the Packet SNR. A narrow transition window that
matches measurements of Packet SNR over a wire would be one indicator that Effective
SNR works well.

The second evaluation metric is rate confusion, i.e., how many rates might be best at a
particular SNR value. The example wired link showed clear separation between rates, such
that at every SNR value there is a clear best rate. Conversely, because the transition regions
of different wireless links overlap, links with the same SNR might support very different
rates.

Finally, I determine the SNR thresholds for each MCS and use them to predict the rate
configuration with the highest throughput for each link. The accuracy of this prediction is a
core measurement of how well an SNR metric can inform decisions.

For all of these analyses, I evaluate the predictions made by my Effective SNR model
independently and as compared to Packet SNR.
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Figure 6.1: A scatterplot of packet reception rate versus Packet SNR for wireless links
in the testbed. There are wide transition regions and significant overlap between rates.

6.2.1 Transition Windows

I begin with a visual comparison of the transition regions for real wireless links, and then
present a quantitative evaluation of the difference between Packet SNR and Effective SNR in
transition window width. I focus on SISO links, for which the most testbed links transition
from being lossy to reliable. I examine the remaining configurations in the next section.

Visual Comparison

Recall Figure 3.8 from Chapter 3, which shows a scatterplot of packet reception rate (PRR)
as a function of Packet SNR for three sample single-antenna modulations in the testbeds
described in Chapter 5. This graph demonstrated that for real wireless links, the width of
the transition region is 10 dB or more, so that there is a large range of power levels for which
Packet SNR does not predict performance.

In Figure 6.1, I present a version of that plot that now includes data points for all eight
modulation and coding scheme (MCS) combinations. In this graph, we can see that there is
a correlation between Packet SNR and rate, but there is also a significant overlap between
rates. For most MCS values, the transition region is at least five and often ten dB wide. For a
large SNR range, many links will be lossy using one rate, while other links will work well at
the next higher, or even the second higher, rate. This illustrates why Packet SNR computed
from RSSI does not provide a good indicator of performance across testbed links in practice.

Contrast this with Figure 6.2, which shows the exact same set of data points but using
Effective SNR instead of Packet SNR along the x-axis. This picture now shows a much
clearer separation between rates. Especially for lower MCS values, only a few outlier links
overlap with the next higher rate. Note also that, as shown in Chapter 4, the Effective SNR
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Figure 6.2: A scatterplot of PRR versus Effective SNR for the same wireless links. Rel-
ative to Packet SNR, there are narrower transition regions and cleaner separation be-
tween rates. The overlap that is present is generally between links that use the same
modulation but different coding schemes (see Table 2.2).

is several decibels lower than the Packet SNR because it measures the amount of power that
is actually harnessed by the link, rather than the total power.

In both graphs the separation is generally larger between rates that use different modula-
tions, e.g., between MCS 2, which uses QPSK, and MCS 3, which uses 16-QAM. In contrast,
rates that only differ in coding rate overlap to a more substantial degree. This effect is worst
for the highest rates (MCS 5–MCS 7), which use 64-QAM modulation. I believe this artifact
is fundamental, as it matches the results from the wired link (Figure 3.7); I attribute it to the
fact that these three MCS use coding rates 2/3, 3/4, and 5/6 that are much closer together
than the 1/2-coded and 3/4-coded combinations used for the QPSK and 16-QAM rates.

Quantitative Evaluation

The visual comparison presented above shows qualitatively that Effective SNR provides a
more compact transition region and clearer separation between rates, but note that scatter-
plots can be misleading because they obscure density and distributions—each plot above
has 16,188 points. To understand the data quantitatively, I analyzed the SISO measurements
to find the transition window for each of the measured links.

Formally, I define the transition window of a particular rate to be the set of SNR values
between which packet delivery rises from 10% (lossy) to 90% (reliable) for any link. Table 6.1
gives the width of the transition window (denoted ∆ρ) for SISO rates using the Packet SNR
and Effective SNR metrics. I show the 25th–75th percentile range of points in the transition
window as a measure of the typical link, and the 5th–95th range as a measure of most
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MCS Rate (Mbps)
∆ρpacket (dB) ∆ρeff (dB)

5%–95% 25%–75% 5%–95% 25%–75%

0 6.5 3.08 1.29 2.05 0.81
1 13.0 3.45 1.44 2.38 0.89
2 19.5 6.27 3.12 2.30 0.85
3 26.0 3.93 1.98 3.02 0.94
4 39.0 7.05 3.49 2.19 0.93
5 52.0 7.16 3.20 2.29 1.06
6 58.5 7.25 3.37 2.92 1.41
7 65.0 7.24 2.81 2.92 1.35

Average 5.68 2.59 2.51 1.03

Table 6.1: A table of the widths of SISO transition windows.

links. A good result here is a narrow 1 dB–2 dB window like that measured over a wire
(Figure 3.7).

The table shows that the transition widths are consistently tighter with my model than
with Packet SNR. Most links transition within a window of around 2 dB for most rates. The
width of the SNR-based transition windows is typically two to three times looser, especially
for the denser modulation schemes like 64-QAM and higher code rates. At higher rates, it is
easy for a sub-ideal channel to degrade packet reception. However, while the transitions for
the last four rates are high with Packet SNR, they remain tight with Effective SNR.

Limits on Accuracy

In Table 6.1, the transition regions for Effective SNR range from 1 dB to about 3 dB, de-
pending on the MCS value. In fact, these results for Effective SNR are about the best that
can be obtained because they are close to textbook transitions for flat-fading channels and
those measured over a wire (Figure 3.7). A small improvement is surely possible, but this is
probably limited by the precision of my measurement data. The IWL5300 gives RSSI, AGC
and noise values in dB to the nearest integer, and outputs at most 8-bit CSI over a 48 dB
range for only 30 out of 56 subcarriers. With this combination of factors, a CSI quantization
error of at least 1 dB is likely.

Summary

This section showed that my Effective SNR model provides a channel metric that can
narrow transition windows and shows a separation between rates. The larger significance
of narrow transition windows is that, by reducing them enough that they do not overlap,
I can unambiguously predict the highest rate that will work for nearly all links nearly all
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of the time. In contrast, Packet SNR transition windows overlap such that for a given SNR
there may be many different best rates for different links in the testbed. I explore this next.

6.2.2 Rate Confusion

To understand whether my Effective SNR model accurately predicts packet delivery, I
analyze the fastest working rate (PRR> 90%) for each link and all NIC settings. If we
consider the set of all links that have the same SNR value (binned in groups of 1 dB), the
best link is the link with the fastest working rate, and the worst link is the slowest. Ideally,
SNR would perfectly indicate rate and all links with the same SNR would have the same
best rate, but in practice there is a gap; this gap is the rate confusion.

In Figure 6.3, I show the rate confusion by plotting the rate versus SNR for the best
and worst links, broken down by configuration. Recall that to measure PRR I sent over 800
packets for each link in transmitter configuration. To assign a single Packet SNR or Effective
SNR value to the trace, I choose the median measurement over all successfully received
packets. The SISO experiment (Figure 6.3(a)) shows links for both testbeds combined. The
remaining graphs (Figure 6.3(b)–6.3(d)) show rates for SIMO, MIMO2 and MIMO3 configu-
rations for the Intel testbed only; it is denser than UW and supports MIMO experiments
over the IWL5300’s transmit power range. Note that the SIMO figure does not include data
for the lowest 6.5 Mbps rate because, with the high degree of spatial diversity, very few
links experience loss at that rate within the transmit power range of the IWL5300.

For the SISO (Figure 6.3(a)) and MIMO3 (Figure 6.3(d)) cases, the figures show that using
Packet SNR results in a large spread between the best and worst lines. Except for extremely
low and high SNRs, nearly all SNRs have at least two—and up to five different—rates as
suitable choices for the best rate. That is, Packet SNR often poorly indicates rate.

In sharp contrast, the two Effective SNR lines overlap almost all the time, and mostly
appear to be a single line. This is almost an ideal result. Effective SNR is a clear indicator of
best rate. When there is slight separation, the spread is only between rates that use the same
modulation but different amounts of coding, just as I described in the last section. These
combinations are also close together in our wired experiments.

Interestingly, these results show that Packet SNR predictions are much better for the
SIMO and MIMO2 cases, though still not as accurate as Effective SNR, particularly for
the highest rates. The reason is spatial diversity: Spare receive antennas gather the received
signal and combine it to make the channel more frequency-flat [35], thus bringing the
Packet SNR closer to the Effective SNR. This effect is well-known, though typically not
observable using real 802.11 NICs which, except my prototype implementation, do not
export CSI. This result suggests that Packet SNR is a reasonable predictor for an 802.11
configuration with significant diversity, using RSSI measured in that configuration. Still,
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Figure 6.3: Rate confusion with Packet SNR and Effective SNR. Excepting very low and
high SNRs, one Packet SNR value maps to multiple best rates for different links, though
it works better in configurations that use spatial diversity (SIMO and MIMO2). For the
same data, Effective SNR provides a clear indicator of the best rate for nearly all links.
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Packet SNR does not transfer well across the antenna modes, because diversity gains and
inter-stream interference change unpredictably. This makes Packet SNR less useful as a
method of selecting rates, as we will see in the next section.

6.2.3 Selecting Rates

In Section 6.2.1, I showed that transition regions for Effective SNR are generally tighter than
for Packet SNR. In Section 6.2.2 I showed that Effective SNR as a channel measure has less
rate confusion relative to Packet SNR. These results indicate that a threshold-based Effective
SNR algorithm should be better able to distinguish whether a particular MCS combination
works for most links. In this section, I show how to choose SNR thresholds and analyze
whether these thresholds lead to good choices for real wireless links in my testbeds.

Choosing SNR Thresholds

The first question is how we should choose the SNR thresholds needed in Equation 4.3 to
decide whether a link will reliably deliver packets in a particular configuration. A low SNR
threshold will lead to aggressive rate selection, with many false positives as transmitters send
at a rate faster than their links support, and widespread packet loss. A high SNR threshold
will cause many false negatives, in which transmitters select rates conservatively and send
more slowly than necessary. In this thesis, I use a simple heuristic: Choose thresholds to
balance the prevalence of false positives and false negatives.

To find the threshold for a particular MCS value, I use the following procedure. Define
good links to be those links with PRR >90%. The CDF of the SNR values for these links then
indicates the false negative rate; choosing the 25th percentile SNR as the threshold means
that the 25% of links that have lower SNR values will be falsely classified as not working.
Similarly, we can define bad links to be those with PRR <80%. Then the CDF of the SNR
values for these links shows the inverse of the false negative rate; the 25th percentile SNR
would falsely classify the 75% of links with larger SNR values as good links. To balance
false negatives and false positives, we can plot the CDF of SNR values for good links and
the complementary CDF of SNR values for bad links on the same graph. The x-coordinate
of the intersection point of the two lines is the SNR threshold that balances false positive
and false negative error rates, and the y-coordinate of that point gives the balanced error rate.
An ideal result is a balanced error rate of 0%, so that the SNR threshold perfectly classifies
all links as working or not.

Figure 6.4 shows the error rate versus Packet SNR for the SIMO, MIMO2, and MIMO3
configurations, and Figure 6.5 shows the same data using Effective SNR. Unlike in Sec-
tion 6.2.2, the Packet SNR or Effective SNR value used to make these graphs is taken from a
single MIMO3 packet. To compute Effective SNR for SIMO and MIMO2 configurations, I
compute the SIMO and MIMO2 Effective CSI as described in Chapter 4. For Packet SNR, I
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use the measured Packet SNR for all antenna configurations, as the transmitter keeps the
total radiated power constant across antenna modes.

The results show that both SNR metrics have a balanced error rate under 14% for all
configurations. Effective SNR has a lower error rate for all but the lower MIMO2 rates,
often much lower. We also see that both schemes perform worst for the highest MCS
combinations in each antenna mode that use 64-QAM with close coding rates. This matches
the expectations from earlier sections.

I plot the CDF of the balanced error rate for each scheme in Figure 6.6. The balanced
error rate curve is generally 1%–2% less for Effective SNR than for Packet SNR. I also plot
the relative balanced error rate of Effective SNR compared to Packet SNR in Figure 6.7. This
graph shows that the Effective SNR balanced error rate is as low as 40% of that achieved
with Packet SNR, and less than 10% worse for the single rate where that is the case. Thus, it
seems likely that my threshold-based Effective SNR model will be a better predictor of link
performance than using thresholds with Packet SNR. I investigate this next.

Using Thresholds to Select Rates

Having computed the Packet SNR and Effective SNR thresholds for each MCS value, I now
evaluate how well the chosen rates work in my testbed.

I used the thresholds computed above to choose rates for 2163 links in my wireless
testbed. These are the links that support at least 6.5 Mbps, so they can deliver packets, but
are not so strong that the fastest rate works perfectly, so that rate selection is meaningful.
I follow the procedure in Algorithm 4.2: Given a single Packet SNR or Effective SNR
measurement from each trace, predict how well each configuration works and then choose
the fastest one. I compare to the ground truth optimal rate for each link, computed by using
the packet reception rates described earlier to compute the actual performance of each rate.

Figure 6.8 shows the results when selecting rates using Packet SNR or Effective SNR.
The graph contains one line for each algorithm. A point (x,y) on a line means that the
corresponding algorithm achieves at least an x fraction of optimal performance for a y
fraction of links. An ideal result would be a vertical line x = 1, showing that all links achieve
optimal performance.

In this graph, we see that Effective SNR dramatically outperforms Packet SNR. The
median link in our testbed achieves 83% of optimal performance using rates selected with
Effective SNR, while using Packet SNR for rate selection results in a median performance of
13%. With Packet SNR, nearly half the links choose rates that deliver no packets at all, while
Effective SNR is so excessively aggressive for less than 10%. Though there is still a sizable
gap from optimal, this experiment highlights that Effective SNR performs much better than
the Packet SNR, even when using only a single channel measurement and no adaptation of
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Figure 6.4: False negative and false positive error rates as a function of Packet SNR
threshold. The figure shows results for wireless links that use one- (top), two- (middle),
and three-stream (bottom) rates (MCS 0–MCS 23).
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Figure 6.5: False negative and false positive error rates as a function of Effective SNR
threshold. The figure shows results for wireless links that use one- (top), two- (middle),
and three-stream (bottom) rates (MCS 0–MCS 23).
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rates. (I explore rate adaptation in detail the next chapter.)

To understand how much the particular choice of threshold affects both algorithm, I
experimented with raising or lowering the SNR thresholds uniformly across the different
MCS choices. Raising the Effective SNR thresholds by 1 dB results in more conservative
choices of rate and improved average performance: Fewer links achieve maximum perfor-
mance, but the worst links that were over-selecting improve to a larger fraction of optimal.
However, raising or lowering the Packet SNR had little effect on the curves in Figure 6.8,
which suggests that the balanced error rate technique achieves locally-optimal thresholds.

Why does Effective SNR choose rates so much better than Packet SNR? The key reason
is that Effective SNR is able to compute a different Effective CSI for each modulation
and number of spatial streams based on the particular subchannels used. This means that
Effective SNR can make decisions about each configuration independently, and hence can
recognize when fading will make a strong link work poorly in one antenna mode but not
another. In contrast, there is no way using RSSI measurements alone to predict Packet SNR
in different configurations. Packet SNR must make a decision independent of fading, which
often results in overly-aggressive choices.

This dramatic difference in performance highlights the key strength of Effective SNR:
Its ability to predict performance in a wide space. Though this example only included
selecting rates keeping all other metrics fixed, subsequent studies will consider additional
dimensions of the wireless configuration space.

6.2.4 Summary

In this section, I analyzed whether Effective SNR accurately predicts packet delivery. I
found that viewing wireless links through the lens of Effective SNR can lead to visual
separation between rates and narrow transition regions within rates. The second part of
this study showed that Effective SNR is a clear indicator of rate, usually narrowing down
the possible set of best rates to one or two MCS within an antenna configuration. The third
analysis showed that Effective SNR results in generally good choices for rate (median 83%
of optimal), while Packet SNR often chose rates that simply did not work (median 10% of
optimal).

In the rest of this chapter I demonstrate that Effective SNR has a few other useful
properties that other channel metrics do not, namely that it can be used to solve joint
optimization problems such as between transmit power and rate, and that the estimates it
provides are robust to interference.
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Figure 6.9: Effective SNR (for QPSK) versus Packet SNR for flat (left) to faded (right)
links.

6.3 Transmit Power Control

The data above showed that my Effective SNR model can predict delivery for measurements
taken over a range of transmit powers, among other choices of rate and spatial streams. I
now show apply this model to the joint interaction of transmit power and rate, and I show
that CSI measured at one transmit power level is useful to predict delivery at a different
power level. This is valuable for power control applications, e.g., pruning excess power to
reduce co-channel interference. Earlier work has shown that Packet SNR based on RSSI
does not do this well [77, 91, 110].

6.3.1 Transmit Power Control in Faded Channels

First, I analyze the effect of changing transmit power in faded channels. To do this, I simply
scale the CSI measured at maximum transmit power for a link and compute the resulting
Effective SNR over a range of power levels.

I found that changing transmit power has a different effect (in terms of delivery and
highest rate) on different testbed links even if they start at exactly the same rate and SNR
value. Figure 6.9 plots the Effective SNR versus Packet SNR relationship for six example
SISO links from my 802.11n testbeds, chosen to represent a range of frequency-selective
fading profiles similar to those in Figure 3.9. The links range from nearly flat to deeply
faded. Correspondingly, they have different slopes.

On the left, Packet SNR matches Effective SNR for the nearly flat link. Since all subcarri-
ers have the same strength, this link can be modeled as a single carrier with a single BER,
and hence scaling transmit power has a linear effect on the Effective SNR. However, for the
right-most, deeply faded links, the Packet SNR decreases from 25 dB to 15 dB (10× transmit
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Figure 6.10: Power saving and performance impact of pruning excess transmit power.
Pruning with Effective SNR is tight (within 0.5 dB) and does not degrade performance.
Pruning with packet SNR degrades performance more without much extra savings.

power reduction) between the dashed lines, while the Effective SNR only drops by 4 dB
(2.5×). This occurs because reducing the power has different effects on error rate at different
SNR levels (see Figure 2.3)—so additional power has less impact on strong subcarriers than
on weak subcarriers. This difference in how well devices harness power across links makes
transmit power control non-trivial and explains why it has been hard for prior algorithms
to use measurements at one SNR value to predict how well links will work at a different
power level.

6.3.2 Making Predictions with Effective SNR

I test the ability of Effective SNR to make predictions across power levels by considering
the goal of trimming excess transmit power. Excess transmit power is power that can be
removed without causing the highest rate for the link to drop.

These experiments start with 88 SISO links from the Intel Labs testbed configured to
radiate 10 mW of transmit power. I then take a single CSI sample per link. Considering
transmit power reductions in increments of 2 dB, I use the threshold-based Effective SNR
and Packet SNR algorithms to predict the best supported rate for each reduced power level,
and choose the lowest power level with the same best rate. The measurements described
earlier include the ground truth packet reception rate for each power level and thus they
can be used to check the accuracy of the predictions.

Figure 6.10 shows the power savings and performance degradation of four different
threshold schemes. A good result here is power savings without a loss of performance;
the absolute amount of power savings is not meaningful as it depends on the testbed and
the link. The Measured (Optimal) line shows the best that can be done. Measured PRRs
at all power levels are used to guide power control decisions. Therefore, the final delivery
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probabilities are hardly decreased (all links have PRR >90%). Most links save a little power,
and some save a lot.

The graphs show that using Effective SNR to predict how much power to trim has a
similarly good tradeoff. Impact on rate remains limited, yet power is saved, more than
10 dB for around 10% of the links. The gap between the Measured and the Eff SNR lines is
because Eff SNR thresholds might be slightly conservative for some links.

To show that this trimming is tight, I considered the effect of using more aggressive—i.e.
slightly lower (0.5 dB)—Effective SNR thresholds. This operation results in little additional
power savings, but degrades performance for many more links.

Finally, I compared this algorithm to a scheme that uses Packet SNR to save power. The
results show Packet SNR the savings are roughly similar, but more links have degraded
performance and several stop working altogether.

6.4 Interference

I conclude this chapter by investigating how my Effective SNR-based model can cope with
interference. This challenge is one of the largest potential weaknesses of this technique,
because Effective SNR is based on measurements taken only during the packet preamble.
There are three important components of dealing with interference, which I approach in
turn.

6.4.1 CSI During Interference

The first question is: If a weak interferer occasionally transmits while a packet is being
received, does this weak transmission cause wild swings in the predicted link quality?

I studied the variation of CSI measurements during transient interference. I chose two
nodes at UW that do not detect each other with carrier sense, and alternately designated one
as the transmitter and the other as the interferer. The nodes were configured to send large
packets designed to collide, while all other receiving nodes monitored the CSI to simulate a
total of 20 links. The experiment also varied the transmit power of the node designated as
the interferer from low to high to induce a large range of interfering channels, over which I
evaluate the impact of interference on CSI measurements and my Effective SNR model.

For all but one of 20 links, the rate predicted by my model for the majority of correct
packets was the same with and without interference; the remaining link was off by a single
rate. In other words, the interference does not corrupt the CSI measurements, because the
MIMO-OFDM training procedure can fairly accurately estimate CSI. Note that OFDM does
not turn interference into inflated RSSI, unlike the spread spectrum modulations used in
802.11b. From these measurements, we can conclude that the mere presence of interference
does not completely invalidate Effective SNR values, and thus transient interference will
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not necessarily cause wild swings in the recommend transmit configuration.

6.4.2 Recognizing Collisions

A second task is to recognize collisions when they occur, in order to distinguish between
too-aggressive rate selection and interference loss. The solutions to these problems are very
different. To work around persistent collisions from hidden terminals, a transmitter increases
its MAC backoff counter and/or initiates the RTS/CTS procedure which is normally dis-
abled for protocol efficiency. In contrast, when rates are over-selected the transmitter should
reduce its rate but ideally need not add additional protocol delay. Accurately distinguishing
between these two effects is known to improve performance in practice [50, 120, 123].

To recognize collisions, I propose to leverage a new MAC feature of the 802.11n packet
aggregation mechanism. Block ACKs selectively acknowledge frames in a batch of packets
transmitted as one continuous burst. Each packet in the burst has a separate checksum,
and thus the Block ACK serves as block-based feedback of packet correctness just like
the block-based checksums analyzed in PPR [50]. We can therefore use the error patterns
in the Block ACK to recognize collisions: When the rate is over-selected, errors should
be randomly distributed throughout the batch, and bursty when a collision clobbers a
continuous part of the batch. The ability to recognize interference and hence decouple
interference avoidance and rate selection has been shown to improve performance in many
systems (e.g., SoftRate [120]).

6.4.3 Effective SINR

The final task is to dealing with persistent interference, i.e., if the RTS/CTS procedure does
not successfully avoid collisions. For continuous interference the Effective SNR computed
from CSI will likely provide an aggressive estimate, and the system will need another way
to compensate. It may be possible to use an Effective Signal-to-Interference-and-Noise Ratio
(Effective SINR) metric that incorporates CSI measurements from the interfering nodes to
predict packet delivery taking into account the MIMO-OFDM fading properties of both the
desired signal and any interfering transmissions. I leave the investigation of this technique
to future work.

6.5 Summary

From the studies in this chapter, I conclude that Effective SNR consistently provides accurate
estimates of packet delivery for nearly all links and all configurations without any per-link
calibration. Viewing diverse wireless links in my testbeds through the lens of Effective SNR
showed that there is a low degree of rate confusion and narrow transition region, contrary
to the same results with Packet SNR. I presented my method to choose Effective SNR
thresholds, and showed that Effective SNR can select rates that work well for most testbed
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links. The results in Section 6.3 demonstrate the flexibility of this approach by showing that
CSI measurements are valid not just across different rates, but also across transmit power
scaling. Finally, I discussed three ways in which my Effective SNR model, in conjunction
with 802.11n protocol features, can work well in the presence of interference, though I leave
detailed investigation of this problem for future research.

In the remainder of this thesis I evaluate the ability of Effective SNR to solve a variety of
tasks. In the next chapter, I deploy my model as part of a rate adaptation system that selects
the operating rate for a wireless link in mobile channels.
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Chapter 7

RATE SELECTION WITH EFFECTIVE SNR

In the last chapter, I showed that my Effective SNR model can accurately predict packet
delivery for 802.11n. Here I close the loop, demonstrating how my model can be applied to
solve an 802.11n configuration problem.

This chapter presents an in-depth study of the application of Effective SNR to the
problem of rate selection for 802.11. This is a fundamental, well-studied problem because
selecting a good rate at which to encode data is crucial for a link to work perform well, and
if links do not perform well then no higher-level applications can be built. Though there is a
wide variety of rate control algorithms, these probe- and channel-based schemes generally
do not extend well to 802.11n and/or fast mobile channels.

I first compare an Effective SNR-based rate selection algorithm against state-of-the-art
schemes for single-antenna 802.11a/g systems, which generally work well for SISO links.
The goal is to show that Effective SNR performs as well as or better than these existing,
well-studied probe- and channel metric-based schemes on their home ground, while my
method has the advantages of simplicity, deployability, and generality.

I then show that my Effective SNR model extends well to 802.11n (MIMO), where other
schemes do not work well. The results in this chapter will show that Effective SNR provides
an accurate and response rate selection algorithm that provides good performance across
SISO and MIMO configurations and a range of mobile channels.

In the next chapter, I will explain how to apply Effective SNR to a set of other configura-
tion problems.

7.1 Experimental Methodology

I experiment with Effective SNR, an algorithm based on my model, plus SampleRate [14],
the de facto rate selection algorithm in use today, and SoftRate [120], a research algorithm
with the best published results.

I implemented a version of Effective SNR that randomly probes other antenna modes to
collect CSI, and that sends Effective SNR estimates back to the transmitter. I ran it online
against SampleRate in a human-scale mobility test. The results showed that the probing
and feedback have little penalty: Effective SNR works better than SampleRate by a small
(5%–10%) margin.
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For a detailed comparison of Effective SNR with other algorithms, I turn to simulations.
This is for two reasons: First, SoftRate runs on a software-defined radio, and cannot be
implemented on a currently available commercial 802.11n NIC. Second, I want to compare
the algorithms over varied channel conditions, from static to rapidly changing, to assess
how consistently they perform. No algorithm will beat SampleRate by a significant margin
on static channels, because it will eventually adapt to the channel. In contrast, SoftRate
performs well even when the channel is changing rapidly. However, it is hard to generate
controllable experiments in high-mobility settings. Traces let us perform these comparisons
directly.

In this section, I first describe the rate selection (or adaptation) algorithms studied, and
then present my trace-driven simulator that I use to perform the comparisons between the
different strategies.

7.1.1 Rate Selection Algorithms

SampleRate [14] is an implicit feedback scheme that uses only information about packet
reception or loss to guide rate selection. It maintains delivery statistics for different rates
to compute the expected airtime to send a packet, including retries. It falls back to a lower
rate when the airtime of the chosen rate exceeds (due to losses) the airtime of a lower rate.
Standard implementations send a packet to probe 1 or 2 higher rates every 10 packets, to
determine whether to switch to a higher rate.

The main weakness of SampleRate is its slow reaction to change. If the wireless channel
quickly degenerates, SampleRate will incur multiple losses while it falls back through
intermediate rates.1 When the channel recovers, SampleRate’s infrequent probing con-
verges to the new highest rate slowly. Algorithms such as RRAA [123] aim to improve on
SampleRate’s weaknesses, but they are less widely used. The version of SampleRate I test
is based on the minstrel [109] implementation in the Linux kernel. For 802.11n (MIMO)
links, I use a version of SampleRate adapted for multiple streams, and based on the Linux
minstrel_ht [28] algorithm.

SoftRate [120] is an explicit feedback scheme that uses information gathered during
packet reception at a given rate to predict how well different rates will work. The input to
these predictions is the bit error rate (BER) as estimated from side information provided
by the convolutional decoder. SoftRate chooses rates based on the performance curves that
relate the BERs for one rate (a combination of modulation and coding) to another. Each rate
will be the best choice for some BER range. SoftRate has been shown to dominate trained
SNR-based algorithms such as CHARM [55], so I do not evaluate against those approaches.

1 The original SampleRate [14] did not reduce rate for retries, but some implementations [55] and the version
used in modern kernels [109] do. This turns out to be important for good performance.
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SoftRate is defined for SISO channels, like SampleRate, and its predictions hold only for
fixed transmit power and antenna modes. It does not extend to MIMO systems; instead,
separate SoftRate probes would be needed for each separate antenna configuration. I
only use it for 802.11a/g experiments. To cover the full SISO range, I extended the MIT
implementation of SoftRate to the 64-QAM modulation and added support for 2/3 and 5/6
rate codes.

Effective SNR uses my model in a very simple way, based on Algorithm 4.2. Given
recent channel state information and per-MCS Effective SNR thresholds, it computes the
highest rate configuration that is predicted to successfully deliver packets. It runs at the
receiver, measuring CSI on received packets and returning rate changes to the sender along
with the ACK like SoftRate. Finally, to protect against poor choices near a rate boundary in
our model, I fall back one rate if consecutive packets must be retried and the Effective SNR
level has not changed. This is a fixed rule.

Like SoftRate, this algorithm obviates the search phase. There is no calibration of dy-
namic thresholds. This is not rate adaptation so much as rate selection that changes only
because it tracks the channel’s evolution. And unlike SoftRate, the predictions of the model
hold over different antenna modes. This lets it run over 802.11n rates as easily and in the
same way that it runs over 802.11a/g rates. Thus, I report results from both 802.11a/g and
802.11n runs for this algorithm.

Optimal. Finally, I take advantage of simulation to add upper bounds on achievable
performance. This lets me assess how well the algorithms perform on an absolute scale.
The Optimal scheme has an oracle that knows the true highest rate that can be successfully
delivered at any given time. This is of course impractical, but the simulator can provide
it. The Delayed Optimal scheme knows the optimal rate that worked on the channel
for the previous packet and uses it for the next transmission; unlike Optimal, it does
not know the future. Since SoftRate and Effective SNR use an estimate of this previous
channel state, and SampleRate infers the recent channel state, they are unlikely to beat
Delayed Optimal. The gap between Delayed Optimal and Optimal is also likely to be large
because of inherent wireless channel variability—the Optimal algorithm gets the benefit of
instantaneous transient improvements in the channel.

7.1.2 Trace-driven Simulator

The simulator I built uses a trace from a real mobile channel and implements all algorithms
described above.

Channel Trace

I collected real channel information for the simulations. I walked around UW CSE while
carrying a laptop configured to send back-to-back small packets to stationary testbed nodes



94

that record the CSI. The CSI measures frequency-selective fading over real, varying 20 MHz
MIMO channels. This is typically not observed with more narrowband experimentation, e.g.,
on the USRP. Recall that CSI is estimated during the preamble of the packet transmission,
independent of the modulation and coding of the payload. Therefore, the mobile transmitter
can quickly cycle through all antenna configurations (SIMO, MIMO2 and MIMO3) by
sending a single short UDP packet at the lowest rate for each configuration.2 This enables
fine grained sampling of the channel, approximately every 650µs. The following results
are derived from a trace with approximately 85,000 channel measurements taken over 55
seconds, spanning varying RF channels that range from the best 3-stream rates to SISO
speeds.

The measured CSI from the trace is interpolated to 56 carriers and serves as the ground
truth for the channel in the packet simulator I describe next.

Simulator

To simulate rate selection algorithms operating over a mobile channel, I built a simulator
from three interacting parts: (1) An 802.11n packet simulator, which determines whether
packets will be delivered successfully given a particular instance of the wireless channel.
This simulator also computes the physical-layer feedback used by the SoftRate and Effective
SNR algorithms. (2) Implementations of the SampleRate, SoftRate, and Effective SNR algo-
rithms. (3) An 802.11n MAC simulator, which maintains the state of the 802.11n protocol,
including the current time, the length of transmissions, and MAC backoff parameters. The
MAC simulator acts as a bridge between the packet simulator and the rate selection algo-
rithms, taking rate choices from the rate selection algorithm and returning to it information
about packet success or failure and the appropriate physical-layer feedback at that point in
time.

802.11n Packet Simulator. I wrote a custom 802.11a/g/n packet simulator in a combination
of MATLAB and the MIT C++ GNU Radio code for SoftRate. Given the CSI describing
a particular wireless channel, the simulator implements packet reception as shown in
Figure 7.1. This includes demodulation for BPSK through 64-QAM, deinterleaving, and
convolutional decoding with soft inputs and soft outputs. Packets are correctly received
when there are no uncorrected bit errors, or else they are lost. Thus given a measured CSI
trace, the packet simulator computes which MCS combinations would successfully deliver
packets for each CSI record in the trace.

The physical-layer feedback values are computed by the packet simulator. While ap-
plying error correction decoding to the received bitstream, the simulator also computes

2 Cycling through antenna modes to measure the full MIMO CSI could be avoided using the 802.11n extension
spatial streams (Section 4.6.2), but the IWL5300 does not yet support this technique.
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Figure 7.1: The 802.11n MIMO-OFDM decoding process. The MIMO receiver separates
the RF signal (0) for each spatial stream (1). Demodulation converts the separated signals
into bits (2). Bits from the multiple streams are deinterleaved and combined (3) followed
by convolutional decoding (4) to correct errors. Finally, scrambling that randomizes bit
patterns is removed and the packet is processed (5).

SoftRate’s soft-output BER estimate for each CSI record and for each SISO rate. The simula-
tor also computes the Effective SNR values for each CSI, but to reflect real-world NIC limits,
Effective SNR is not given the measured CSI. Instead, I corrupt the CSI at the level of ADC
quantization. This typically induces an error of ±1.5 dB in the output Effective SNRs.

802.11n MAC Simulator. A second component of the simulator implements the 802.11n
MAC. This includes randomized backoff and link-layer packet aggregation. Initially, the
simulator is reset to time 0 with default parameters for the MAC protocols, and then a rate
selection algorithm will choose a rate for the next transmission. The simulator calculates
whether that transmission is received, updates its internal MAC state, and then returns
information about packet delivery to the rate control algorithm, as well as the appropriate
physical-layer feedback. After every transmission, the simulator executes 802.11n’s random-
ized backoff process and computes the new time for the start of the next transmission.

In 802.11n, transmitters send aggregated packet batches up to 65,000 bytes long. Batches
are shortened for slower rates, when the transmission time is instead limited by the 802.11n
standard’s 4 ms restriction on transmission duration. Given an MCS, the simulator computes
how long the transmission will last, then whether the batch is received successfully. As a
single packet batch transmission can last up to 4 ms, this may overlap multiple channel
probes in the trace. As senders use a fixed MCS for the entire transmission, the MAC
simulator requires that >80% of simulated packets for those channel records be received
correctly in order for the batch to be received (this allows for the effects of coding).

SoftRate operates using the 80th percentile soft estimate from the range of packets.
The Effective SNR feedback for a particular packet batch is given from the CSI of the first
measurement overlapping that transmission. This models a varying channel that samples
for CSI periodically, as happens when CSI is measured during the packet preamble.
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Rate Selection Algorithms. The SampleRate, SoftRate, and Effective SNR algorithms are
implemented as described previously, and get their inputs and outputs from the packet
and MAC simulator components. Each algorithm chooses a rate based on its internal
state, and the simulator returns whether the rate succeeds as well as any physical layer
feedback, namely SoftRate’s BER estimates and the Effective SNR values, measured during
the transmission.

Metrics. The goal is to evaluate the ability of these algorithms to respond to changing
channel conditions. Thus, the primary metric is the delivered MAC layer rate per time,
modeling a UDP application. Higher-layer factors, such as TCP reactions to loss, will affect
how this rate translates to throughput. These effects are ignored in the results presented
here.

The results reported are the median of five trials where the simulator is initialized with
different random seeds. To vary mobility, I scale the trace at different speeds; for example, 4×
mobility means that the records are assumed to arrive 4× faster than they were measured.

7.2 SISO Rate Adaptation Results

I first examine the performance of Effective SNR for selecting SISO rates. The goal of this
experiment is to establish a reasonable baseline, showing that Effective SNR performs as
well or better than existing well-studied SISO rate adaptation algorithms, while using a
simpler algorithm. If so, this will provide initial validation that the accurate packet delivery
predictions provided by my Effective SNR model are useful in practice.

7.2.1 Effective SNR vs. Optimal

I begin by comparing Effective SNR performance against the Optimal algorithm. Figure 7.2
shows the rate over time for Effective SNR and Optimal over the SISO trace. The rate
is averaged over a window of 200 ms to smooth the data for readability. Effective SNR
performs excellently. It is below Optimal but consistently tracks the Delayed Optimal
algorithm, a realistic upper bound. Overall, Effective SNR delivers 90% of packets, with
about 10% over-selection of rates.

Note that Packet SNR was observed to fare quite poorly in mobile channels [120]. Since
Effective SNR reflects link fading, its estimates are more accurate (Chapter 6) and are stable
(2×–3× less variance).

7.2.2 Effective SNR vs. 802.11a/g algorithms

Next, I compare Effective SNR with SampleRate and SoftRate, in order to see how it
performs against current state-of-the-art SISO rate adaptation algorithms.

Figure 7.3 shows the delivered rate of each algorithm versus time. While it is hard to
separate the lines on the graph, at 1× speed, Effective SNR slightly outperforms SoftRate,
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Figure 7.2: Effective SNR SISO performance versus Optimal in human-speed mobility.
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Figure 7.3: Effective SNR, SoftRate, and SampleRate SISO performance in human-
speed mobility.

which slightly outperforms SampleRate. These results were surprising, because the SoftRate
work [120] indicated a large gap between SoftRate and SampleRate. In deeper analysis, I
discovered that reducing the rate for retries is an important factor that gives SampleRate
short-term adaptability. Without this rate fallback (the “SampleRate without fallback” line),
SampleRate loses 25%–50% of its performance in mobile channels (Figure 7.4). This variant
without fallback is the SampleRate algorithm that was the basis for earlier comparisons.3

Figure 7.4 shows the effects of mobility on SISO channels. Each line plots the total
amount of data delivered during the trace as a function of the speed at which the trace is

3 M. Vutukuru, personal communication, and code inspection.
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Figure 7.4: OPT, Effective SNR, SampleRate, and SoftRate SISO performance in fast
mobile channels.

played. The speeds range from 1× to 16×, corresponding to movement speeds of between
walking speeds ≈3 mph when using the normal simulation, to about 50 mph for the fastest
playback. The y-axis value is normalized by the Optimal algorithm’s performance to better
illustrate how the relative performance changes at different speeds.

This plot shows that all schemes fall off with increased speed; the gap between Optimal
and the Delayed Optimal algorithm increases from about 20% to about 30% at the fastest
speeds. However, even in these mobile channels, Effective SNR holds up quite well and
tracks the Delayed Optimal algorithm within 5%.

SoftRate performs slightly worse at the normal human speeds, but maintains a nearly
constant performance, about 70% of Optimal, as the trace speed increases. SampleRate
degrades the fastest with increasing mobility, and the version that does not reduce rate
on retries finally less than 40% of the Optimal performance, while the other algorithms
maintain better than 60% of Optimal performance at all speeds.

Finally, I note that while the performance differences between the schemes can be
significant, other evaluations have reported larger differences. Note that they studied
throughput based on TCP traffic, which will magnify performance gaps by reacting to
packet loss. The UDP-like results I generated using my simulator capture the underlying
accuracy of the individual schemes instead.

7.3 MIMO Rate Adaptation

Now I extend the evaluation to MIMO channels. This will show the generality of my model,
which can flexibly support multiple spatial streams. I compare Effective SNR to an 802.11n-
enabled version of SampleRate, to understand whether the larger search space will increase
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Figure 7.5: Optimal, Effective SNR, and SampleRate MIMO performance in human-
speed mobility.

the performance gap between the two schemes.

Figure 7.5 and Figure 7.6 show the performance of an unmodified Effective SNR algo-
rithm selecting among 802.11n MIMO rates, as well as (modified) SampleRate and the two
Optimal algorithms. This graph does not include a line for SoftRate, as it is not defined for
multiple streams. These figures are in the same form as for SISO, except the range of rates
has grown by a factor of 3 to support up to 195 Mbps. The MIMO trace is longer and has
more packets-per-second, and thus includes enough data to speed up the trace by a factor
of up to 256×.

Overall, the Effective SNR trends in these graphs are similar to those in the SISO graphs.
At human mobility speeds, Effective SNR tracks the Delayed Optimal algorithm and delivers
excellent performance, with 75% accuracy and 10% over-selection. In faster mobile channels,
Effective SNR tracks the Delayed Optimal algorithm until the speeds increase to about 128×,
after which there is a slightly larger gap with for MIMO than for SISO. This arises likely
because Effective SNR must now choose between 24 rates instead of 8. It is slightly more
likely to choose rates lower than the highest rate that would have worked.

These graphs also show that—as with SISO links—SampleRate performs well in human
speed mobility, only slightly worse than Effective SNR. But for SampleRate, this trend
does not hold, and as the speed of the trace gets faster the performance degrades rapidly to
around one-third of Optimal, and less than half of Effective SNR. The difference between
SampleRate and Effective SNR highlights that Effective SNR is able to handle the large
MIMO rate space even in rapidly-changing channels, while the probe-based SampleRate
algorithm cannot.
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Figure 7.6: Optimal, Effective SNR, and SampleRate MIMO performance in faster mo-
bile channels.

7.4 Enhancements: Transmit Antenna Selection

I conclude this chapter with an example that highlights the strength of my Effective SNR in
that it accommodates choices other than just rate. In particular, I amended the implemented
Effective SNR algorithm to select the best transmit antenna set.

Transmit antenna selection can be useful in practice, for instance in an 802.11n AP that
selects which antennas to use to send packets to a legacy 802.11a/g client (plus uses all
antennas to receive packets). With three antennas to choose from, the expected theoretical
gain in SNR is a little over 2.5 dB [30]. For a SISO link, this gain is likely enough to advance
to a higher rate.

I ran my antenna selection-enabled Effective SNR algorithm on a 3x1 MISO channel,
extracted from the 3x3 MIMO trace. These measurements correspond to those that would be
measured if the transmitter exploited the “extension spatial streams” CSI probe to measure
the 3x1 MISO channel as I described in Section 4.6.2.

Using the MISO CSI feedback, the Effective SNR algorithm chose the antenna with the
highest Effective SNR for the next transmission. This gave a gain in the total packet delivery
of 5%. For comparison, the Optimal antenna selection algorithm achieved a 10% increase by
always knowing which antenna was best.

While transmit antenna selection presents a relatively small gain for this trace, it comes
at no cost and does not complicate the Effective SNR algorithm. In contrast, no other rate
adaptation schemes as directly support these enhancements. They would instead require
customized, multi-dimensional probing algorithms and coarse adaptation of antennas to
implement antenna selection.
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Antenna selection is one of many ways that my Effective SNR model can be applied
beyond simple rate selection. In the next chapter, I present a study of four different network
configuration applications.

7.5 Summary

In this chapter, I presented a detailed evaluation of Effective SNR in the context of con-
figuring the rate for 802.11a/g and 802.11n links in a mobile setting. The results for the
single-antenna 802.11a/g systems showed that Effective SNR performs as well as or bet-
ter than existing state-of-the-art algorithms for rate adaptation, with a much simpler rate
selection algorithm.

A key result of this evaluation is that this good performance extends to 802.11n, while
the probe-based SampleRate algorithm suffered in the larger search space. This validates
my fundamental claim that probe-based algorithms will suffer in large search spaces with
dynamic channels, and it motivates the need for and benefits of my Effective SNR approach.

Finally, I also showed that Effective SNR easily supports additional enhancements such
as antenna selection. In the next chapter, I will flesh out Effective SNR applications by
applying my model to a set of other configuration problems along different dimensions of
the configuration space.
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Chapter 8

FURTHER APPLICATIONS OF EFFECTIVE SNR

The detailed evaluation presented in the previous chapter showed that my Effective
SNR model provides good performance when selecting rates for 802.11a/g and 802.11n
links, one important application in wireless link configuration. In this chapter, I present an
evaluation of the Effective SNR for four wireless configuration problems to further illustrate
the broad applicability of my work.

I chose four problems that represent the key applications needed to configure a future
wireless network. The first three are selection algorithms for access points, operating chan-
nels, and multi-hop paths through networks. These represent the main decisions (beyond
rate) that need to be made in flexible topologies such as Wi-Fi Direct networks. The last
application is to classify whether a device is mobile, in order to switch between algorithms
designed for static vs. mobile links, or to trigger a search for a new, better operating point
when the device begins to move. Together these are the building blocks of an automatically-
reconfiguring network that provides good performance.

8.1 Experimental Methodology

To understand how well different techniques perform at the applications studied in this
chapter, I took comprehensive measurements of both packet delivery and the RF channel in
the University of Washington testbed. These data provide the ground truth performance of
links in different configurations and also a record of the channel state during the experiments.
Using this data, I perform offline simulations of the different algorithms.

8.1.1 Dataset

I measured the links between 24 static devices in my testbed at the University of Washington.
The measurements in this chapter were taken 3 years after the measurements used in
Chapter 6 and Chapter 7, and they include a different set of devices. In addition to evaluating
the applications in question, the results in this chapter will also tell us whether these NICs
in practice experience physical degradation that invalidates their in-factory calibration.

I took measurements on all 35 channels, each 20 MHz wide, that the IWL5300 devices
support. Of these 35 channels, 11 overlap in the 83 MHz-wide unlicensed 2.4 GHz band,
and the remaining 24 non-overlapping channels are spread across three non-contiguous
bands between 5.170 GHz and 5.835 GHz. In an experiment, one sender transmits packets
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with random payloads to 23 receivers. The transmitter sends a total of 2400 packets by
interleaving 100 packets from each of the 24 MCS that correspond to 1-, 2-, or 3-stream
802.11n rates. Each receiver uses 3 antennas for spatial diversity and/or spatial multiplexing.
I cycled through all transmitters and all channels over the course of a few hours, and I took
data at night to attempt to minimize the impact of interference.

The above measurements included 100 packets for each link, MCS, and channel. From
these data, it is straightforward to compute the ground-truth packet reception rate (PRR)
for each of these configurations. In this chapter, I decouple the ability to make accurate
choices at the application-level from the rate selection algorithm needed to realize it. I thus
assume an ideal rate selection algorithm that always correctly chooses the fastest MCS.
This provides an Optimal baseline against which I compare Packet SNR- and Effective
SNR-based application configuration algorithms.

8.1.2 Simulating RF Measurement-based Algorithms

While measuring the performance of the link, I sent exhaustive packet probes at all rates,
and collected the RSSI and CSI for each correctly received packet. Of course, this collected
information would not be available to an algorithm attempting to quickly configure the
network. Instead, the algorithms are given only the RF measurements from the first packet
received. I use this to compute Packet SNR (ρ) and Effective SNR (ρeff). By using only the
first measurement, I emulate the performance that a configuration algorithm would obtain
in practice, where it would use only a single probe.

In the next three sections, I evaluate how well my Effective SNR model can make access
point, channel, and path selections on this dataset. I use a different mobile dataset for the
last section, and describe it therein.

8.2 Access Point Selection

The first protocol operation a wireless client device performs is to join an existing network.
This operation typically consists of scanning for a known access point (AP) by sending
broadcast packets called probe requests on different frequencies until a recognized AP is
found. In a typical home today, there will likely be one valid probe response: The single
home AP. However, in a dense Wi-Fi network, such as an enterprise Wireless Distribution
System or a Wi-Fi Direct peer-to-peer network, the client needs to choose from among many
available responding devices that connect it to the same network. This is the access point
selection problem.

The general access point selection algorithm examines the probe responses to predict the
link performance for each access point, and then it chooses the fastest one (Algorithm 8.1).
The standard approach used today is for the client to measure the Packet SNR from each
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Algorithm 8.1 ACCESSPOINTSELECTION(AP SET A, SENDER s)

1: return arg maxa∈A GETMETRIC(a, s) // choose the AP with the best downlink metric

Algorithm 8.2 GETMETRIC-PACKETSNR(SENDER s, RECEIVER r)

1: Measure the Packet SNR ρ at r from s

2: return ρ

Algorithm 8.3 GETMETRIC-EFFECTIVESNR(SENDER s, RECEIVER r)

1: Measure the CSI at r from s // a full CSI including all TX and RX antennas
2: Compute the Effective SNR estimates ρeff,m for each MCSm
3: Determine whether each MCS works by comparing ρeff,m > τm
4: return the bitrate B(m) for the fastest working MCSm

probe response and connect to the strongest AP (Algorithm 8.2). Here, SNR measurements
are used as a proxy for an estimate of the downlink throughput, and the AP with the
highest SNR is considered the best. (Other factors than link quality, such as interference
and contention with other clients, can affect throughput as well; some systems can take
these factors into account, but they are not relevant here. I discuss these and other related
issues in Chapter 9.) In this section, I evaluate whether using Effective SNR to predict the
downlink rate can improve this decision process (Algorithm 8.3).

8.2.1 Characterization of Access Points

I begin by characterizing whether access point selection matters in my testbed. How much
does a good or bad choice impact performance?

To generate data for this evaluation, I first filtered the data set to the 11 channels in the
5 GHz band for which there is no overlapping UW Wi-Fi network. Then I considered the
access point selection problem by considering each client and channel in turn. In particular,
for node c playing the role of a client, I defined A to be the set of access points that
responded to a probe from that client on a particular channel. By considering each channel
independently each client generates 11 data points, for a total of 11 ∗ 24 = 264 simulated
client association attempts. To ensure that AP choice can matter, I excluded 17 clients that
had fewer than 3 responding APs on a particular channel, leaving 247 total.

Figure 8.1 and Figure 8.2 show the results, framed as the difference in throughput
(relative or absolute) from the best choice AP for the worst, median, and average choices.
These graphs show that for this testbed, choosing the wrong AP can hurt: The worst
responding AP offers less than half of the best AP’s throughput in 95% of cases, and in
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Figure 8.1: For each client, the relative difference in throughput over access points com-
pared to the best choice.
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Figure 8.2: For each client, the absolute difference in throughput over access points com-
pared to the best choice.

most cases the random (average) and median APs are better but not close to optimal. In
absolute terms, the downlink from the median AP is 50 Mbps to 100 Mbps worse than from
the best AP in most cases. A poor choice of access point can dramatically hurt performance
in practice.

8.2.2 Access Point Selection Performance

As presented above, Algorithm 8.1 shows the framework for selecting access points typically
used today, with Packet SNR (Algorithm 8.2) usually used as the metric of comparison
between access points. I calculate the Effective SNR link metric as in Algorithm 8.3—a
simple instantiation of the procedure described in Chapter 4.
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Figure 8.3: CCDF of relative performance of AP selection using Packet SNR and Effec-
tive SNR, compared to Optimal.

Figure 8.3 shows the performance of Packet SNR and Effective SNR-based access point
selection algorithms relative to the optimal algorithm. I plot the complementary CDF of the
results, so that each (x,y) point in the graph shows the fraction of clients y that achieved
performance at least within the fraction x of the optimal algorithm. The line for a perfectly
accurate algorithm would be located in the upper right corner of the graph: All clients
would achieve the best possible throughput. This graph shows that both algorithms perform
well, choosing a near optimal access point in almost all cases. I attribute this overall good
performance to the fact that the potential access points are spread across a large testbed,
exhibiting a wide range of SNRs. This large geographic spread means that there may be
one or a few nearby access points that offer a clear best choice, and Packet SNR—which is
correlated with distance—can correctly identify good choices.

Although both algorithms perform well, Effective SNR offers improved performance.
The Effective SNR algorithm finds the best access point for 83% (204) of clients, versus 72%
(177) for Packet SNR. Considering only the suboptimal choices, those made by Effective
SNR are better: 3/4 (31/43) of incorrect choices are within 80% of optimal, versus only half
(35/70) when using Packet SNR.

Next, Figure 8.4 shows the absolute performance loss of the two algorithms in choosing
the access point. Here, each (x,y) point represents the fraction of links y that choose an
access point within xMbps of the best access point. The area over the curves represents the
performance lost by each algorithm: An accurate algorithm would be in the top left corner,
losing little throughput for only a few links.

Examining this graph, we can see that these benefits translate to raw bitrate as well. Ac-
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Figure 8.4: CCDF of the throughput lost using APs selected by Packet SNR and Effective
SNR, compared to Optimal.
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Figure 8.5: The relative throughput selecting APs by Packet SNR or by Effective SNR.

cess points selected by Effective SNR links are within 10 Mbps of optimal for 90% (223/247)
of cases, but only 78% of selections meet this criterion when using Packet SNR. For Packet
SNR, the 90th percentile performance loss is 42 Mbps, versus 9 Mbps with Effective SNR.
These results show that the Effective SNR-based access point selection algorithm works well
and makes better choices than one based on Packet SNR. Using the area over the curves as
a measure of the inefficiency, this area is 2.7× larger when using Packet SNR.

That Effective SNR is statistically better than Packet SNR over the testbed does not mean
it works better in all cases. I examine the head-to-head performance of selecting access
points via Effective SNR or Packet SNR in Figure 8.5. For each link, I plot the ratio of the
performance of the access point picked with the Effective SNR strategy to that of the access
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point chosen by maximizing Packet SNR. If the two APs perform equally, the ratio will be 1;
if the Effective SNR strategy chose a better AP the ratio will be larger. The algorithms chose
APs with equal performance for 69% (171/247) of the clients, Effective SNR makes a better
choice in 21% (53) of cases, and Packet SNR is better for the remaining 10% (23). Though
Effective SNR does not always lead to a better choice, it does so twice as often as Packet
SNR. The graph also shows that when Packet SNR does make a better choice, Effective SNR
comes close—within 2/3 for 5 in 6 of these cases—while it often improves on the choice
from Packet SNR by a larger margin.

Effective SNR occasionally worse. It may be surprising that Effective SNR, with its ability
to better understand subchannel effects, can ever result in a worse choice of access point
than using the Packet SNR computed from RSSI. I present one likely explanation.

Recall that these algorithms compute channel metrics using a single RSSI or CSI measure-
ment. Generally, a single CSI probe is not as accurate as multiple measurements, because
of error in the estimates of individual subcarriers. On the other hand, a single RSSI probe
measures only the total power across carriers and is consistent across packets.

Summary. When selecting access points, both Packet SNR and Effective SNR make good
choices; each algorithm selects the fastest access point in most cases. However, the ability of
Effective SNR to capture channel effects leads to better choices more often and generally
closer-to-optimal performance when it makes a choice incorrectly.

8.3 Channel Selection

Using the new Wi-Fi Direct standard, 802.11 devices that wish to send data directly (instead
of through the access point as in 802.11 infrastructure mode) can create a peer-to-peer link.
Depending on the amount of interference in the network (e.g., from other clients of the
access point) and the quality of the link between the two devices, they may wish to move the
link to a different operating channel in order to improve performance. This is one example
of the channel selection problem: To quickly choose the best operating frequency for a pair of
nodes to communicate. In this section, I define the “best” channel to be the channel that
provides the highest throughput in the absence of interferers.

The channel selection problem is similar to the access point selection problem, and has a
similar algorithmic solution (Algorithm 8.4). It can use the same GETMETRIC functions for
Packet SNR (Algorithm 8.2) and Effective SNR (Algorithm 8.3). The primary difference is
a reordering of the parameters: Rather than a fixed receiver with fixed channel choosing
between multiple senders, a fixed sender and receiver must choose between multiple
channels.
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Algorithm 8.4 CHANNELSELECTION(CHANNEL SET C, SENDER s, RECEIVER r)

1: for all c ∈ C do
2: Both s and r switch to channel c
3: Compute the channel metricmc using GETMETRIC(s, r)
4: end for
5: return arg maxc∈Cmc // choose the channel with the best metric
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Figure 8.6: The relative difference in throughput over 802.11n channels.

8.3.1 Characterization of 802.11 Channels

To start my investigation of channel selection algorithms, I first measured how the operating
frequency affects 802.11n links in practice.

As in Section 8.2, I filtered the data to the 11 channels in the 5 GHz band for which there
are no co-channel university APs. (Note that channel selection generally makes sense within
one frequency band. Selection across bands is trivial: Because of better antenna gain and
Friis’ Law effects, a 2.4 GHz channel has typically 10 dB–15 dB stronger SNR than a 5 GHz
channel for the same nodes.) I further eliminated from consideration any pairs of devices
that did not obtain at least 6.5 Mbps throughput on at least 3 of the 11 channels. This left
201 unidirectional links, approximately a third of the 24 ∗ 23 = 552 links in the testbed.

Results

Figure 8.6 and Figure 8.7 show how the throughput of the worst, median, and average
channels compares to the best channel for these links. Note that because the channel set
is fixed and independent of connectivity, the worst channel might deliver no throughput
at all—unlike AP selection, in which the client was choosing from only those nodes that
responded to its probe. About a third of the links had at least one such channel.
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Figure 8.7: The absolute difference in throughput over 802.11n channels.

These figures demonstrate that the choice of channel can dramatically impact perfor-
mance. Figure 8.6 shows that the worst channel offers less than half of the best throughput
for more than half the links. In absolute terms, this difference can be quite large: The worst
channel is a median 33 Mbps worse than the best channel, and for a few links (about 7%)
the difference is more than 100 Mbps. For these links, some channel will deliver no packets
at all, while another delivers packets at nearly the maximum bitrate. An unlucky choice of
channel can cripple performance and result in little to no throughput.

The median and average channels perform about equivalently in our testbed, but they are
significantly worse than optimal. These channels yield less than half the optimal throughput
for 15% of the links and for only one third of links do these come within 80% of the best
throughput. These figures show that for very few links do most channels perform optimally.
The median or average channel is 15 Mbps worse than the best channel for most links, and
the gap is larger than 25 Mbps for 20% of links.

8.3.2 Channel Selection Accuracy

I evaluate Packet SNR and Effective SNR-based channel selection algorithms based on
Algorithm 8.4 and using the link metric functions described in Algorithm 8.2 (Packet SNR)
and Algorithm 8.3 (Effective SNR).

Figure 8.8 shows the performance relative to the optimal algorithm when using Effective
SNR or Packet SNR to choose between channels, using the same format as I used for access
point selection in Figure 8.3. Again, we see that both algorithms perform well, though
Effective SNR is a better predictor of application performance. Effective SNR chooses an
optimal channel for 121 links (60%), whereas Packet SNR is optimal for only 71 links (35%).
The Effective SNR-based algorithm is within 90% of optimal for 168 links (84%), 80% for 181
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links (90%), and 70% for 191 links (95%). In contrast, maximizing the Packet SNR only gets
within 90% of optimal for 112 links (56%).

Next, I compare the absolute performance loss of the channel selection algorithms in
Figure 8.9. Again, the area over the curves represents the performance lost by each algorithm.
This area is 3.3× larger for the Packet SNR-based selection algorithm, showing that Effective
SNR is significantly more accurate. This difference translates to about 9 Mbps faster links
when selecting channels via the Effective SNR.

Finally, Figure 8.10 shows the ratio of the performance of the channels selected by
Effective SNR and Packet SNR. Recall that a ratio larger than 1 means that Effective SNR
chose a faster operating channel. The algorithms choose channels with equal performance
for 82 (41%) of the 201 links, while the Effective SNR-based algorithm chooses a better
channel for 94 (47%) links and the Packet SNR-based algorithm for the remaining 25 (12%).
Additionally, the gains from Effective SNR are much larger than its losses: The Packet SNR
strategy chooses a channel that performs 20% better than the Effective SNR-selected channel
for only 4/25 (16%) links when its channel is better, while Effective SNR chooses a 20%
better channel for 50/94 (53%) of cases. In other words, the Effective SNR channel selection
algorithm is more likely to pick a better channel by a factor of about 4 (94/25), and the
difference is more likely to be significant by a factor of about 3 (53%/16%).

Summary

These results shows that both Effective SNR- and Packet SNR-based channel selection
strategies perform well in my testbed. However, the Effective SNR channel selection strategy
is significantly more accurate: It chooses an optimal channel for 70% more links, it offers
about 9 Mbps more bandwidth per link when selecting suboptimal channels, and it is more
likely to choose a better channel than a worse channel by a factor of 4.

Note that the benefits of Effective SNR relative to Packet SNR are larger for channel
selection than they were for AP selection. I attribute this to the fact that Packet SNR is
very similar for fixed links across channels, while in contrast Packet SNR varies widely
across geographically distributed APs. With fewer outliers, Packet SNR measures small
SNR differences across similar channels. In contrast, Effective SNR can accurately assess the
impact of subchannel fading effects, leading to improved performance.

8.4 Path Selection

While today’s access point and wireless distribution system (WDS) infrastructure networks
use tree-structured topologies and have only a single path between any two nodes, a future
device-to-device wireless network such as Wi-Fi Direct may offer many paths along which
packets can be routed. Choosing which path in a multi-hop wireless network will provide
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Figure 8.8: Channel selection algorithm performance relative to an optimal algorithm.
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Figure 8.9: Channel selection algorithm performance loss from optimal algorithm.
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Figure 8.10: Channel selection performance with Effective SNR relative to Packet SNR.
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the best throughput is the path selection problem, and it can be thought of as a generalization
of the access point selection problem I described in Section 8.2. Indeed, a client implicitly
makes a routing decision when joining a WDS network—which access point it chooses can
make a large difference in its connection quality to the root access point that serves Internet
access. Research in multi-hop routing for wireless mesh networks [10, 96] has shown that
the choice of path can effect a large difference in connection quality.

The practical state of the art in this area is the recent work by Bahl et al. [10] on an
opportunistic repeater scheme for 802.11a. In this design, when a client with a strong link
detects rate anomaly [42]—that is, that its throughput is hurt by a client with a weak link
monopolizing airtime—the strong client evaluates whether relaying that client’s packets
would improve throughout for both. In certain scenarios, they showed that this could
improve aggregate performance of the network by 50%–200%.

While this solution is practical and works well, the use of MIMO and other hardware
techniques in 802.11n significantly complicates the picture. First, the scheme of Bahl et al.
uses a link’s RSSI (as a measure of Packet SNR) to select between the 8 available 802.11a
rates. In contrast, as I have shown in Chapter 6, Packet SNR does not accurately predict the
rate for 802.11n links, nor does it enable devices to choose between different MIMO modes.
Second, Bahl et al. used a homogeneous network of single-antenna 802.11a chipsets; but the
set of devices in most 802.11n networks will be heterogeneous, with differing numbers of
antennas and asymmetric transmit/receive capabilities. While it is not clear how to handle
these challenges via Packet SNR, Effective SNR offers the ability to overcome them. In
this section, I evaluate the ability of Effective SNR to deliver the benefits of opportunistic
repeaters in 802.11n networks.

Note that the problem of path selection is similar to AP selection, except that when
choosing between repeaters (or a direct link) the entire path must be considered rather than
merely the last hop. For simplicity, I assume that the network diameter is small such that
pipelining [96] is of limited benefit, and do not consider schemes that forward along multiple
unreliable paths such as ExOR [15]. I next describe the basic path selection algorithm I
evaluate and characterize the multi-hop paths in my testbed.

8.4.1 Path Selection Algorithm

I describe a simplified path selection algorithm in Algorithm 8.5. This relay selection
algorithm only considers paths with a single intermediate node (called a relay). In step 4,
this algorithm computes the expected transmission time (ETT) [26] of the multi-hop path as
the sum of the time to transfer the packet along each hop. This metric makes the optimistic
assumption that there is no protocol overhead, and hence provides an overestimate of actual
performance. However, it lets us compare the ability of Packet SNR and Effective SNR
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Algorithm 8.5 RELAYSELECTION(RELAY SET R, SOURCE s, DESTINATION d)

1: tdirect ← 1/PREDICTBITRATE(s,d) // time to send a bit directly from s to d, or ∞
2: for all r ∈ R do
3: // time to hop through r is the sum of the times of the two hops
4: trelay,r ← 1/PREDICTBITRATE(s, r) + 1/PREDICTBITRATE(r,d)
5: end for
6: ropt ← arg minr∈R trelay,r // find the optimal relay ropt with the shortest path
7: if trelay,ropt < tdirect then
8: return ropt // if optimal relay offers a shorter path
9: else

10: return ∅ // if the direct link is best
11: end if

algorithms to predict the performance of one-hop paths. To balance this optimism, I only
consider paths that provide at least 20% throughput improvement over a direct link.

Relay selection is only a subset of the full path selection problem, but it is simple and
recoups much of the potential gain. I considered all 24 ∗ 23 ∗ 11 = 6072 source-destination-
channel tuples in the UW testbed, where I consider each 5 GHz channel as a different
instantiation of the network. Of these 6072 node pairs, 2037 (34%) have a direct link. Adding
in optimal one-hop relays enables a further 2317 (38%) of node pairs to connect, for a total
of 4354 (72%) connected links. The remaining 1713 (28%) of node pairs require two relays to
connect, and would probably be best helped by switching to the 2.4 GHz band in order to
obtain higher SNR and longer links.

How much can relaying help in this testbed? To evaluate this, I calculated the bitrate
of the optimal one-hop relay choice. I also computed the bitrate of the optimal path using
a modification of Algorithm 8.5 to handle multiple hops. (Note that, because it ignores
overheads that increase roughly linearly in the number of hops, the path bitrate is even
more optimistic than the relay bitrate.)

Figure 8.11 shows the net bitrate of the direct link, optimal relay, or best multi-hop
path between the 6072 node pairs. This figure demonstrates that the use of a single relay
captures most of the improvement for node pairs that can communicate faster than 20 Mbps.
Though the relay strategy leaves a quarter of the node pairs disconnected, the optimal
multi-hop paths would only enable those nodes to communicate at an optimistic estimate
of 10–20 Mbps at best.

Figure 8.12 shows the achievable improvement in bitrate between the node pairs. Only
25% (1621/6072) of node pairs gain 20 Mbps or more using these strategies, and 60% (964)
of these also gain 20 Mbps using a single relay.
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Figure 8.11: Performance of the direct link
and the optimal relay or multi-hop path.
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Figure 8.12: Performance gain from relay
or multi-hop path.

These results show that relay selection recoups most of the gains of full path selection
in this testbed. Thus, I restrict the evaluation to selecting a good relay. To complete the
description of the algorithms, I now explain how to choose relays using Effective SNR and
Packet SNR. To complete Algorithm 8.5, we need only define the function PREDICTBITRATE,
which we use to predict the bitrate of the link studied.

Relay Selection with Effective SNR

To define the function PREDICTBITRATE for Effective SNR, we can simply use GETMETRIC-
EFFECTIVESNR (Algorithm 8.3)—because the link metric of interest for Effective SNR is
indeed simply the predicted bitrate of the link.

Relay Selection with Packet SNR

Unfortunately, defining a PREDICTBITRATE-EFFECTIVESNR function for Packet SNR is
more complicated. We have already seen in Chapter 6 that Packet SNR is not a good
indicator of packet delivery for a specific MCS, so the approach we used for Effective SNR
in Algorithm 8.3 would offer poor performance.

Instead, I observe that there should still be a positively correlated relationship between
Packet SNR and expected bitrate, which I use instead to predict the bitrate. (Note that this
will not tell which specific modulation and coding schemes to use, only what the expected
bitrate will be given ideal rate selection among the many choices.) This approach will
provide a better way to predict throughput from Packet SNR.

To generate this function, I measured the optimal throughput and Packet SNR for all
the links in my testbed. I then divided this data into 1 dB-wide SNR bins, and took the
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Figure 8.13: Deriving a prediction for throughput as a function of Packet SNR.

median throughput of each bin as the throughput prediction for that Packet SNR value. By
connecting these medians (and dropping some sparse bins so that the line monotonically
increases), I derived a monotonic function that uses the Packet SNR measurement to predict
the throughput of a link. I plot the original data as a scatterplot in Figure 8.13, with the
interpolated throughput prediction also shown as a solid line. To define PREDICTBITRATE-
PACKETSNR in order to define a Packet SNR-based relay selection algorithm, I simply look
up the Packet SNR of the link and return the throughput predicted by this line.

Practical Coordination Algorithm

Algorithm 8.5 describes the calculation of the rate, but it does not describe directly how the
two bitrate predictions are obtained. Recall the access point selection algorithm, in which
the client sent a probe to all potential APs and evaluated the downlink performance of
each AP from the probe responses. For relay selection, the sender instead sends a probe
to all potential relays, estimating the link performance from their response. If the relays
include in their response their predicted bitrate to the destination, the sender has all the
information needed to estimate the performance of the relay path. This induces little added
coordination on the network, provided the relays have already calculated the bandwidth
to the destination. If not, the destination can send a single probe response which can be
measured by all relays.

Having defined both algorithms for relay selection, I next evaluate their performance.

8.4.2 Relay Selection Performance

I use Algorithm 8.5 with Packet SNR or Effective SNR to select relays on the same dataset.

Figure 8.14 plots the relative performance of each algorithm to the optimal relay algo-
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Figure 8.14: Relay selection algorithm performance relative to an optimal algorithm.
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Figure 8.15: The relative throughput selecting relays by Packet SNR or by Effective SNR.

rithm; it has a truncated y-axis. Note that the algorithms, which choose to use a relay or not
based on predictions of performance, do not choose to use a relay for the same set of links.
Taking the union of the links for which either algorithm chooses a relay, Figure 8.15 shows
the ratio of the path chosen using Effective SNR to the path chosen with Packet SNR. Both
algorithms perform very well, choosing an optimal relay in more than 80% of cases.

The head-to-head comparison shows a potentially surprising result: The Packet SNR
and Effective SNR-based algorithms have nearly indistinguishable performance (and thus
I truncated the y-axis in Figure 8.14). Effective SNR chooses a better path for 471/3326
(14%) of links and a worse path for 289 (9%). The Effective SNR and Packet SNR lines in
Figure 8.14 are tight. Unlike for access point or channel selection, the ability of Effective
SNR to account for subchannel effects does not improve performance much over simply
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using Packet SNR for relay selection.

To explain this phenomenon, recall from Figure 8.11 that the links for which performance
improves using a relay are those links with low speeds (somewhat less than 100 Mbps). This
is because the best possible relay path—a path with two maximum-rate hops (195 Mbps)—
would have an idealized rate of 97.5 Mbps. Consequently, direct links that are faster will
not benefit from a one-hop relay. These results indicate that the interpolated throughput
values in Figure 8.13 are fairly accurate for slower links.

Why would Packet SNR accurately predict the expected performance for slower links? I
offer two explanations. First, note that the throughput prediction task that I use to select
paths is easier than the packet delivery (Chapter 6) or rate selection problems (Chapter 7).
Rather than knowing which particular configuration work provides the best performance,
the algorithm need simply predict the expected performance value—and only well enough
to eventually select the right relay. This statistical property is easier to get right, and need not
be exact in order to find a good path: A slight over- or under-estimate of one or both hops
might not change the final path selection. For example, if a hop delivers about 78 Mbps, it
does not matter much whether this is achieved as MCS 12 (two streams at 39 Mbps each) or
MCS 19 (three streams at 26 Mbps each). Similarly, for a path using two 78 Mbps hops (total
idealized throughput 39 Mbps), an erroneous prediction of 65 Mbps for one hop results in
an estimate of 35.5 Mbps which is close to the truth and might still lead to a correct relay
selection.

Secondly, slower links are likely to be using single-stream SIMO or dual-stream MIMO2
configurations rather than the three streams used to achieve the absolute fastest rates. The
packet delivery results in Chapter 6, particularly as demonstrated by Figure 6.3(b) and
Figure 6.3(c), showed that Packet SNR can be fairly accurate for these configurations, which
exploit spatial diversity using the excess receive antennas.

These two factors combined explain why Packet SNR performs well for relay selection
in my testbed. This property should generalize, as relaying is generally most useful for
slow links. Effective SNR simply offers little gain relative to SNR in this application, though
it does not require training the Packet SNR/throughput relationship. Still, Effective SNR
performs as well as Packet SNR (if not slightly better) and given its other benefits it is a
natural fit for this application.

8.5 Mobility Classification

The previous three applications in this chapter used the Effective SNR in algorithms that
configure various network parameters. In this section, I use the Channel State Information
(CSI) underlying the Effective SNR model to determine whether a wireless device is moving.
Though this application does not directly use the Effective SNR, this primitive provides an
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important complement to the network-level configuration problems—in wireless systems,
simply knowing whether a device is mobile can improve performance and reliability.

Detecting mobility can be used to enhance reliability in networks that support dynamic
topology, such as today’s cellular phone networks, enterprise Wi-Fi wireless distribution
systems (WDSes), and networks that support relaying mechanisms such as described above.
By proactively looking for a better AP or relay when the device starts moving, service
quality can be improved and downtime reduced.

A recent implementation by Ravindranath et al. [92] detected mobility using the ac-
celerometer in a mobile phone. While this technique is accurate and responsive, it has a few
disadvantages. The use of an on-board sensor means that detection can only be performed
by the mobile client, and thus requires protocol changes to communicate a device’s mobile
state to the other endpoint of the link. This solution is not backwards-compatible. Also, this
technique can only be implemented on devices that have accelerometers, and it requires
that this sensor be powered on.

In this section, I explore whether it is possible to classify whether a device is mobile based
solely on passively measured RF information. If successful, such an implementation would
eliminate all of these drawbacks by requiring no extra hardware and supporting unilateral
adoption by either endpoint of the link, including the static device. Ravindranath et al. made
a preliminary attempt to classify mobility using RSSI, but they were not successful. They
list three challenges: (1) that RSSI is unstable even for static links in a quiet environment; (2)
that RSSI varies by different amounts at different absolute signal strengths and thus needs
to be calibrated; and (3) that RSSI was extremely sensitive to movement in the environment
and triggered many false hints. Here, I show that the CSI can overcome these challenges
and provide a robust solution.

8.5.1 Experimental Setup

I configured a SIMO experiment using a single-antenna laptop as the client device and eight
of the testbed nodes as three-antenna monitors. The client sent 100,000 back-to-back short
packets using MCS 0 (1 stream, 6.5 Mbps), approximately one packet every 200µs for 20 s.
This sampling rate is higher than practical for Wi-Fi. In particular, packets sent at slow rates
or in batches can last as long as 4 ms. I thus downsampled the trace from 100,000 packets
every 200µs to about 5,000 packets every 4 ms before any of the processing described in the
rest of this section.

I ran four experiments to analyze a variety of static and mobile channels. For two
experiments, I placed a static client in the UW CSE Networking Lab, with students present,
but not moving in the room. I next took a trace with environmental mobility in which I left the
client static, but waved my hand within a few centimeters of the antenna and then walked
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around the room and opened doors. Finally, I took a mobile device trace in which I picked up
the laptop and moved it around within a meter of its original location. Chronologically, the
traces were taken in the order described within a 10-minute window, with the second static
trace taken last.

My goal in this section is to develop a simple classification scheme that can distinguish
between these scenarios. In particular, I would like to be able to tell, from RF channel effects
alone, whether the device is in a static or mobile channel (with device or environmental
mobility). A secondary goal is to distinguish between the two types of mobile channels.
Ravindranath et al. argued that both of these two goals are difficult, if not impossible, with
simple RSSI. I believe that the fine-grained information conveyed by the CSI can overcome
these deficiencies.

8.5.2 Classifying Mobility with RSSI

I begin by analyzing RSSI variation over time to confirm that it is indeed difficult to
distinguish between these four traces. Figure 8.16 shows the RSSI in dBm measured by one
receiver for each scenario. In each plot, the three lines each show the RSSI for one of the
three receive antennas. With the typical Wi-Fi noise floor around −92 dBm, these graphs
show the three antennas for a strong receiver with a Packet SNR around 45 dB.

I note several interesting effects visible in these measurements. First, the RSSI is actually
extremely stable in static scenarios, varying roughly 2 dB across 20 seconds. This stability
deviates from the observations by Ravindranath et al., likely because the newer 802.11n
hardware I used is well-calibrated, compared with older 802.11g hardware they used to run
experiments with the MadWiFi driver.

Second, though RSSI does vary with environmental mobility, the variation is fairly small
and mostly limited to the periods of activity directly next to the client. Later in the trace,
when I moved across the room, the RSSI variation decreased to match the static scenario. It
also appears that the variation is not completely correlated across antennas; in several parts
of this trace (e.g., at the beginning and around 10 s–12 s) one or two antennas see variation
in RSSI while the others do not. These periods of partial variation may be indicative of a
static device with environmental movement.

Finally, the mobile trace exhibits the RSSI variation with the largest magnitude, and
shows consistent variation throughout the trace and across all antennas. This is a dramatic
outlier compared to the other traces, and strongly reflects the effects of movement.

Based on this visual evidence, which mirrors the results for the other 7 receivers, I believe
it likely that the static scenario actually can be identified using RSSI, and hypothesize that it
may also be possible to distinguish between environmental and device mobility. However,
I deferred exploring these possibility further because, as I will show next, the CSI can
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Figure 8.16: RSSI variation in different mobility scenarios.

conclusively classify a device’s activity into these three states.

8.5.3 Classifying Mobility with CSI

The last subsection examined the four traces I took—two static traces, one with a fixed
device and environmental mobility, and the last with a mobile device—and showed that
RSSI variation differs visually across in these four scenarios. Here, I examine the same four
traces through the lens of the CSI.
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Quantifying CSI Variation: Pearson Correlation

Recall that the RSSI yields a single power measurement for each antenna for every packet,
whereas the CSI gives a set of matrices of complex numbers that represent magnitude and
phase on different spatial paths and frequencies. To measure the deviation in RSSI, we
could simply look at its variation—e.g., absolute difference between samples, or windowed
variance—over time, as I showed visually in Figure 8.16. In contrast, it is not obvious how
to quantify the variation in CSI over time.

I chose a simple method to quantify the variation of CSI, by using the Pearson correla-
tion function for each spatial path between a transmit-receive antenna pair. The Pearson
correlation is the “standard” correlation for two n-element vectors ~x and ~y:

corr(~x,~y) =
∑n
i=1(xi − x)(yi − y)√∑n

i=1(xi − x)
2
∑n
i=1(yi − y)

2
. (8.1)

Here ~x,~y are indexed by i and have respective means x and y.

To apply this to CSI, let ~rp,t represent the magnitudes of the CSI coefficients across
subcarriers for spatial path p at time sample t. Then we can quantify the change between
sample t and sample t+ 1 by corr(~rp,t,~rp,(t+1)). The correlation will be close to 1 if the CSI
matches across time, i.e., the channel is not changing, and closer to zero if the channel varies
quickly so that the CSI samples are close to being independent.

CSI Variation Examples

Using the same link as in Figure 8.16, I present the temporal correlation for the four exper-
iments in Figure 8.17. Again, each plot shows one line for each of the 3 receive antennas.
These plots show that the static traces have near-perfect correlation, close to 1.0 for the full
20 s trace. In contrast, both the environmental and device mobility traces vary significantly,
as low as 0.9 in environmental mobility and 0.3 when the device itself moves. These results
thus indicate that the Pearson correlation can classify whether the channel is static, and in
changing channel can differentiate whether just the environment is changing or the device
itself is moving.

That the environmental and device mobility scenarios exhibit dramatically different
correlations might be surprising. To explain this, recall that the frequency-selective channel
effects measured by CSI usually result from indoor multipath effects, in which multiple
copies of the transmitted signal arrive at the receive antenna after propagating along differ-
ent (possibly reflected) rays through the RF environment. In many cases of environmental
mobility only some of these rays will be affected. If instead the device is itself moving,
all paths will be affected. This provides an intuitive explanation for why the temporal
correlation is significantly stronger for environmental mobility, though both correlations
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Figure 8.17: CSI variation as measured by correlation in different mobility scenarios.

deviate significantly from the static correlation of 1.

CSI correlation for weak links. The Pearson correlation over CSI has thus overcome two
of the three drawbacks that Ravindranath et al. outlined for classifying mobility using
RSSI. First, the correlation of CSI across time is stable for static links. Second, the Pearson
correlation can distinguish between environmental mobility and a moving device. The third
drawback is that RSSI-based classifiers do not work as well for weaker links: How does my
CSI-based classifier perform in this scenario?

Figure 8.18 analyzes the RSSI and CSI variations during a static trace when the weakest
antenna has a Packet SNR of only 5 dB. I found that, indeed, Pearson correlation does not
work as well for this weak link. In particular, the correlation against CSI is as low as 0.5,
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Figure 8.18: RSSI and CSI variation for a weak link in a static environment.

on par with the mobile device for the stronger link shown in Figure 8.17. The RSSI shown
in the left graph also exhibits similarly larger variation for this weak link compared to the
strong link analyzed above.

To fix this, I introduced a windowed correlation scheme. Before computing the Pearson
correlation values, I average together 10 consecutive CSI samples. This has the effect of
smoothing out the noise corrupting the CSI estimates and restoring the high correlation to
the static traces, while only slightly affecting the low correlations for mobile traces.

Figure 8.19 shows the CDF of the windowed correlation values (denoted corr, and
combined across antennas) over time for these same two links. To better illustrate the
difference across experiments, I capture the deviation from a perfect correlation of 1.0 by
plotting 1−corr on a logarithmic scale. Thus a value of 0.001 on the x-axis means a correlation
of 0.999, while a value of 0.1 means a correlation of 0.9. Recall that lower correlations (right
on the graph) imply that the channels are changing faster.

For both the weak and the strong link, the mobile trace stands out. Its line is to the right,
meaning its correlation is lower, than the other measurements for both links. Focusing on
the lowest correlations (the points in the bottom 20% of each CDF), we can see that only
the mobile traces achieve a correlation below 0.9 (x-axis value 0.1 or higher). Though this
only happens for a small portion of the trace, these points are spread throughout the mobile
portion of the trace (see Figure 8.17(d)). For the stronger link, there is clear separation (at
least an order of magnitude) between the mobile trace, the environmental mobility trace,
and the static traces. For the weak link, it is difficult to distinguish environmental mobility
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Figure 8.19: Windowed CSI variation for a strong and a weak link.

from the static trace. This indicates that the secondary goal of distinguishing these scenarios
may only be achievable for strong links.

CSI Correlation Results

Thus far, I have presented CSI correlation results for one strong and one weak link.

The basic mobility classification is as follows. Continually run windowed temporal
correlations across CSI measurements for active links, and record the smallest correlation
values found. When the smallest correlation is below 0.9 (or over 0.1 in the complementary
scale I plot), the classifier will output that the device is mobile. When the largest correlation
is below 0.99 (or above 0.01 in the complementary scale), the classifier will output that there
may be environmental mobility.

Looking at Figure 8.19, we can see that this algorithm will accurately classify mobility,
but can result in some static scenarios falsely classified as experiencing environmental
mobility. Recall that the traces studied here are 20 second traces of CSI activity; though only
approximately 5%–20% of points fall below (above) these thresholds, the peaks are scattered
throughout the 20 s trace (e.g., see Figure 8.17). Over the period at which mobility state can
change—at least a few seconds—the classifier should see multiple events.

In Figure 8.20, I present the CDFs of windowed CSI over all eight links, separated into
the three mobility conditions scenarios. Note that the mobility and environmental mobility
conditions have 8 lines, one for each receiver, while I have combined both static traces into
16 lines on a single graph. The black vertical lines show the thresholds for environmental
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Figure 8.20: Windowed CSI variation for all eight receivers.

mobility (0.01) and device mobility (0.1).
These results show that the features I identified looking at the first two links extend

to the entire testbed. Notably, all 8 links are properly classified when in device mobility
(right of 0.1 on the x-axis), while none of the 24 traces in the other two conditions are false
positives. For this experiment, my windowed CSI correlation can identify a mobile device
across all 8 receivers, some in different rooms and on different floors.

Next, all 8 links are properly classified as being in environmental mobility, with corre-
lations below 0.99 (right of 0.01 on the x-axis). Only two static traces reach this level, and
those have low Packet SNRs that are near the noise floor. For the combined 16 static traces
across the two experiments, most of the links have correlations above 0.999 (left of 0.001 on
the x-axis) for the entire 20 s period. (Again, the exceptions are the links with very low SNR.)
These latter two figures indicate that windowed CSI correlation can distinguish between
static channels and channels with environmental mobility except at very low SNR values.

8.5.4 Summary

The results in this section offer a promising indicator that RF information can indeed provide
an accurate classification of device mobility, distinguishing between three different types of
RF channels. Though the evaluation is insufficient to prove that these techniques work in
all cases, my windowed CSI correlation technique was able to accurately classify device
mobility from a static channel for eight different receivers spread across my 802.11n testbed.
Additionally, for the 6 of 8 receivers that had strong links, my method could also distinguish
between fully static environments and those environments in which people and objects
moved near a fixed transmitter. The overall results suggest that the results could be much
better, either by parameterizing by the observed SNR level or by using better recognition
algorithms.

These results offer evidence that RF measurements can overcome the three drawbacks
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identified by Ravindranath et al. [92] and can thus provide useful information for mobile sys-
tem behavior. The advantages of an RF-based approach include lower power consumption,
compatibility with today’s protocols, and the ability for these techniques to be implemented
at either end of the link—to work with unmodified legacy devices and devices that do not
include sensors.

8.6 Summary

In this chapter, I evaluated three algorithms using Effective SNR and one algorithm using
Channel State Information to illustrate the flexibility of my model and also flesh out the
space of Wi-Fi network configurations. My Effective SNR-based algorithms offer good
performance for these applications and make them practical.

Effective SNR provides strong performance improvements over the Packet SNR for the
access point and channel selection applications. Interestingly, I found that although Effective
SNR can inform multi-hop path selection in the network, it does not perform significantly
better than Packet SNR because of the 802.11n spatial diversity techniques that improve the
accuracy of Packet SNR.

Finally, inspired by recent work that uses information from on-board sensors to improve
link- and network-level performance, I designed and evaluated a pure CSI-based mobility
classifier. This classifier can be used to complement the prior applications in a variety of
ways, such as informing the nodes in the network when it might be worth looking for a
new operating point.
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Chapter 9

RELATED WORK

In this chapter, I place my thesis in the context of existing work on wireless technology
and wireless systems. I view my research as lying at the intersection of three bodies of
work: (1) understanding real 802.11 wireless channels, (2) theoretical analysis of wireless
link performance, and (3) practical algorithms for configuring wireless systems. I use this
framework to guide the discussion of related work.

9.1 Understanding Real 802.11 Wireless Channels

Since the advent of Wi-Fi technology in the late 1990s, a number of studies have investigated
the performance characteristics of 802.11, and uncovered several issues.

Initial studies of 802.11b in Roofnet [3] and at the University of Washington [95] found
Packet SNR calculated from RSSI to be a weak predictor of packet delivery. Similar results
were observed for sensor networks [127]. One reason for this disconnect was poor calibra-
tion of NICs, which has since improved. Today’s NICs have calibration procedures that
include in-factory measurements of the raw silicon manufacturing variability and on-line
measurements conducted when in active use (e.g., as described in Chen and Hsieh [23]) to
compensate for thermal conditions and power supply effects. As an example, Intel’s open-
source drivers [49] perform seven calibration steps whenever the device powers on, changes
transmit power level, or switches channels to ensure accurate operation of components such
as baseband and RF oscillators, and linear transmit amplifiers. Broadcom advertises that
its Wi-Fi solutions “are capable of self-calibrating based on usage temperature and other
environmental conditions” [16]. These modern calibration solutions have largely overcome
the inaccuracies that plagued early Wi-Fi chipsets.

Another reason that Packet SNR was observed not to predict performance well for
802.11b was the corruption of RSSI estimates by interference [95, 119]. This effect is caused
by the spread-spectrum technologies of 802.11b, and the OFDM and MIMO techniques used
in 802.11a/g/n today reduce this effect greatly.

Despite these two improvements, a fundamental reason for variation across links with
802.11a/g/n OFDM comes from frequency-selective fading, which does not affect spread-
spectrum modulations in 802.11b. These effects have been noticed in several studies of real
hardware from a variety of manufacturers [38, 76] and system analyses [67, 115]. I present
experimental measurements confirming these effects in Chapter 3 and Chapter 6.
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An early 802.11n study by Shrivastava et al. [107] found that the use of multiple antennas
can improve physical layer performance for real hardware. My measurements and model
provide a better understanding of the channel that can explain the underlying cause of these
gains as well as quantify their potential benefits.

Finally, understanding and developing models for real 802.11 channels is a large part of
the 802.11 standards working group. Its members have studied raw channel performance
in a variety of environments and mobility conditions and have developed models that
capture these results, now included as part of the IEEE 802.11-2007 [44] and IEEE 802.11n-
2009 standards [45]. My channel state information measurement tool has been used by
802.11 working group members to inform these models, as well as to provide corrective
amendments [85].

9.2 Theoretical Analysis of Channel Metrics

In the face of fading effects that affect real wireless channels, there has been a large body of
theoretical work on the performance of systems in these environments.

The 2008 study by Vlavianos et al. [119] of metrics for devices that operate in real wireless
channels uncovered problems with all metrics accessible in Wi-Fi cards at the time. My work
fills this gap by both building a practical tool that exposes better physical layer information
and developing a practical methodology to compute an accurate channel metric.

Nanda and Rege proposed the Effective Eb/N0 [79] in 1998 as a way of capturing
performance over generic faded channels, of which OFDM in 802.11a/g and MIMO-OFDM
in 802.11n are instances. Other estimates for faded channels, such as the subcarrier variance
proposed by Lampe et al. [67], may be slightly simpler to compute but are less accurate. As
such, the Effective SNR notion has been adopted by many communities and is the basis of
the theoretical model in my thesis.

Most work on OFDM with convolutional coding (as in 802.11a/g) begins with the
Effective SNR or Effective BER and adds simulated faded channels to build closed-form
expressions for error rates under coding [9, 82, 114]. My model is related, but simpler: I
avoid simulating complex, implementation-dependent coding effects in favor of using fixed,
per-rate thresholds. In prior models, dealing with a different implementation or a different
code meant changing the internals of the computation. My model can naturally extend to
handle different implementations via an adjustment of thresholds.

Effective SNR and related metrics such as the Mutual Information Effective SNR Metric
(MIESM) [41, 51, 57, 72, 75] have also been extended to MIMO-OFDM. These extensions
have been evaluated using simulated channel models for technologies like 802.11n or
LTE/WiMAX, and focused on designing a metric that is tuned to closely predict simulated
delivery, independent of complexity. My model is related to these, but more practical. My
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model uses simpler internals, and I convert CSI to Effective SNR in a way that better matches
the equal modulation and power allocation used by 802.11n and offers a better API for
practical use.

Most importantly, I experimentally evaluate my model at the application level for real
802.11 NICs and RF channels; I am not aware of other work that uses Effective SNR measures
for Wi-Fi outside of simulation or analysis. My studies of Effective SNR in real channels led
me to design my model to account for important artifacts such as quantization error and to
include a better understanding of protocol and implementation concerns.

9.3 Wireless Network Configuration Algorithms

I evaluated my Effective SNR model for packet delivery in the context of a variety of 802.11n
configuration problems. Each of these problems has a history of task-specific algorithmic
implementations, which I discuss here. The key contribution of my thesis is to replace each
of these task-specific algorithms with a single unified algorithm that is simple and accurate.

9.3.1 Rate Adaptation

The problem of efficiently finding a good rate configuration for wireless networks is a
well-studied one, since a good rate selection algorithm is necessary to do anything else with
wireless technology.

The rate control algorithms in use today use a form of guided search to adapt rates
based on packet delivery statistics. Lucent’s ARF algorithm [56], OAR [99], and Sample-
Rate [14] were early rate adaptation algorithms of this type. RRAA [123] enhances these by
dynamically enabling or disabling the RTS/CTS mechanism depending on whether hidden
terminals are a problem.

The state of the art in rate adaptation based on packet delivery is the Linux kernel’s
minstrel [109], a version of SampleRate/RRAA adapted for modern Wi-Fi hardware that can
use lower rates for packet retransmissions. The minstrel algorithm has also been adapted
for 802.11n [28], performing parallel searches between the multiple MIMO modes with
different numbers of spatial streams and channel bandwidths. MiRA [84] is a research
algorithm that takes a similar approach. These guided search approaches work well for
slowly varying channels and simple configurations (e.g., a few rates with fixed transmit
power and channel).

For rapidly varying channels, these algorithms become less effective. Camp et al. [17]
demonstrated the importance of varying the time constants used to generate summary
statistics for minstrel-like algorithms. Recently, RapidSample [92] used hints from smart-
phone sensors to detect mobility and switch to a simplified SampleRate-like algorithm that
walks up and down the rates in an agile manner. This provides better performance when
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devices are moving, but it is not obvious how to extend RapidSample’s logic to 802.11n
where there is not a single linear set of rates. Still, I believe this is a promising direction.

Some research algorithms propose to use Packet SNR based on RSSI to adapt to rapidly
varying channels. RBAR [43] was an early algorithm that aimed to select transmission rate
by measuring SNR at the receiver on the RTS packet, and feeding back a choice of rate
based on precomputed SNR thresholds in the CTS response. This type of exchange forms
the basis of the feedback algorithms now implemented in the 802.11n standard. In the above
mentioned work, Camp et al. used knowledge of device speed to more accurately adapt
these SNR thresholds. The hybrid rate control work by Hartcherev et al. [39], the SGRA [126]
algorithm, and the CHARM [55] algorithms all attempted to train the SNR thresholds of a
link on-line, and use these learned thresholds to inform delivery-based adaptation when
SNR changed suddenly. My Effective SNR can fit into the frameworks of these algorithm
types, but it provides a more accurate indicator of performance and does not need on-line
training to work for a specific wireless channel.

HYDRA [64] used software radios to experimentally evaluate various ARF- and RBAR-
inspired variants of rate adaptation for 802.11n over emulated and real wireless channels.
However, they used narrow 2 MHz channels and only two transmit antennas, so their
results fail to capture the frequency- and spatially-selective nature of real wireless channels
that my experimental data and evaluation have shown are important in practice.

Recent work has returned to the theoretical approach and made headway by measuring
symbol-level details of packet reception. In particular, SoftRate uses the output of soft-Viterbi
decoding for each symbol to estimate the Effective BER [120]. This allows it to predict the
effects on packet delivery of changing the rate. AccuRate uses symbol error vectors and a full
channel simulator for the same purpose [103]. Error Estimating Coding [22] accomplishes
the same goal by changing or supplementing the link-layer coding scheme. Though they
obtain accurate Effective BER estimates, these methods are not defined for selecting other
useful parameters, such as transmit power, and they do not extend from 802.11a/g to
802.11n, e.g., when selecting antennas or numbers of spatial streams.

Compared to all of these approaches, my Effective SNR metric is simple, accurate
and quick, providing competitive or better performance in static and mobile channels. It
is also more general: With a single CSI measurement, I can extrapolate performance in
a wide space of rates, spatial streams, antenna selections, channel widths, and transmit
power levels. I have also shown that Effective SNR can be implemented on commodity
NICs, and I evaluated it over real wireless channels with mobile and fixed clients. My
deeper understanding of fading should also aid attempts to use the faster OFDM rates in
challenging outdoor mobile environments [27] that have previously been hampered by an
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inability to explain or predict performance in a reasonable way.
Finally, some proposals obtain better performance by changing the physical layer.

FARA [89] drastically changes the fundamentals of the communication to modulate and
code data differently to adapt to each subchannel’s best performance. This is not compat-
ible with practical distributed schemes like 802.11 that require that each packet can be
demodulated in isolation, and this approach currently requires custom hardware [90]. Other
proposals designed to better integrate with 802.11 combine transmission with more efficient
channel-dependent coding [71], frequency-aware interleaving [13] or partially-correct ARQ
schemes [50]. I believe the better estimate of overall error given by the Effective SNR and the
understanding of where errors come from given by the CSI can enhance all these schemes.

9.3.2 Transmit Power Control

Work on transmit power control falls into two main categories: Saving energy and increasing
spatial reuse (or both). PCMA [77] increased network capacity by a factor of two in simulated
dense networks using a distributed transmit power reduction protocol. MiSer [88] focused
on maximizing data-per-Joule and was able to increase this metric by 20% in simulated
802.11a networks. Son et al. [110] performed practical power control work in single-rate
sensor networks. Symphony [91] is a recent, more practical work that was experimentally
evaluated in an indoor 802.11a network using multiple rates and multiple channels. It
used a synchronous, two-phase rate adaptation and power adaptation protocol to reduce
transmit power by 3 dB and increase network-wide throughput by 50%. These are a few
representative samples of a wide body of work.

Finally, all these proposals for transmit power control require complex probing and
adaptation mechanisms. Several of these studies noted that they had to measure perfor-
mance at each different power level because it was hard to predict the impact of a power
change, even knowing the best rate in the current state. To yield practical protocols, they also
assume symmetric channels. This does not match reality in 802.11n networks which have
fundamentally asymmetric transmit and receive behavior, such as receiver spatial diversity.
My Effective SNR model can overcome these deficiencies by being able to extrapolate the
effects of power control with lightweight measurements that can capture the effects of
asymmetric channels. The example evaluation in Chapter 6 suggests that, because of a good
predictive model, we can use the Effective SNR to directly and confidently select a reduced
transmit power without degrading link performance.

9.3.3 Antenna Selection

Antenna selection algorithms have long been available and are well-studied [115]. Some
802.11a/g devices such as the Intel IPW3945 and similar chipsets from Atheros and Broad-
com include multiple antennas but only a single transmit/receive chain. In these forms,
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the NICs would simply choose to receive from the antenna with the strongest RSSI, and
would also use this antenna to transmit packets [24, 113]. More advanced techniques took
subchannel fading into account [125].

However, in indoor 802.11a/g systems, these techniques usually provided little gain
because switching antennas did not alleviate the primary problem of frequency-selective
fading—my evaluation also confirms this result. In contrast, another experiment used
RSSI-based antenna selection between multiple differently-polarized antennas for an 802.11
ground link to an unmanned aerial vehicle [118]. In this highly dynamic scenario, the authors
found that antenna selection provided almost 70% throughput improvement, suggesting
that these techniques may have increased benefit as wireless is used in more dynamic
environments.

Modern multi-antenna techniques make these algorithms more interesting. For instance,
a battery-operated client may want to disable excess receive antennas to save power; the
802.11n standard [45] introduces a new Spatial Multiplexing Power Save mode for this
purpose. It also includes an antenna selection feedback protocol to help link endpoints
negotiate antenna use. However, these optional protocols are generally unimplemented;
instead, the algorithms in use today remain based on extensive probing. For example,
the rate control algorithm implemented in Intel’s 802.11n wireless drivers [49] contains
two concurrent adaptation loops. One is the standard rate adaptation loop that probes
different numbers of streams: SIMO, MIMO2, and MIMO3. The second loop switches
between antenna sets within a mode, for instance using antenna pairs AB, AC, and BC to
alternately send the two-stream MIMO2 packets. Antenna selection thus enlarges the state
space, exacerbating the configuration problem and slowing down the convergence time of
these adaptation algorithms. The Effective SNR model I present can cut through this joint
configuration space and directly choose a good operating point.

9.3.4 Access Point Selection

Most existing work on access point selection focuses on other aspects than raw link bitrate,
because other factors such as AP load and wired network performance can matter more
in practice [11, 53]. Proposed systems modify clients, access points, or both [11, 12, 81, 117]
to probe and/or estimate these factors and to better balance load. Recent state-of-the-art
enterprise systems such as DenseAP [78] achieve load balancing by (1) centrally calculating
the best potential access point for the client based on triangulation and measurements from
the client’s probe requests, and then (2) forcing the client to associate there by only letting
that AP send a probe response.

My work with Effective SNR is complementary to these techniques. Though these
algorithms focus on load balancing, they often include a component that requires estimation
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of the channel between the client and the AP; my evaluation showed that the use of Effective
SNR will improve this step. Secondly, these procedures have not been updated for the multi-
antenna techniques used in 802.11n, in which these predictions will need to be made across
heterogeneous APs and for asymmetric links. Effective SNR can transparently adapt to
these scenarios, while the existing Packet SNR-based procedures do not handle these steps.

9.3.5 Channel Selection

Like AP selection, most channel selection work focuses on load balancing between contend-
ing links and networks. Rather than estimating the achievable rate between two devices,
these algorithms (e.g., [4, 5, 62, 97]) probe the free airtime on the available channels because
that is a large contributor to actual throughput. They then organize, in a distributed or
centralized manner, either the local or global set of access points across channels to make
efficient use of available mechanisms.

Again, Effective SNR complements this work by providing a simple, accurate, quickly
measurable link performance estimator that can be plugged as a subroutine into algorithms
of this type. My model can also be used in new emerging peer-to-peer wireless scenarios
as envisioned in MultiNet [20] and SampleWidth [21], and instantiated today in Wi-Fi
Direct [122].

9.3.6 Multi-hop Networks

Research on multi-hop routing is typically framed in the context of mesh networks, and it
focuses on maintaining an efficient distributed routing infrastructure (e.g., [6, 26, 86, 98]).
The IEEE standardized the 802.11s amendment in 2011 [46] to support mesh networking,
using a protocol called hybrid wireless mesh protocol (HWMP) to select paths. The default
link metric in HWMP is close to the idealized ETT [26] metric I used but includes more
accounting for overhead. As with ETT, computing this metric requires knowing the wireless
bitrate and the packet reception rate, both of which the Effective SNR can predict accurately
and quickly.

Other research on multi-hop networks focuses on pipelining transfers along long mesh
paths [68,69,96], using network coding to improve performance of crossing flows [59,61,80],
or propagating data more effectively across the network by making use of many unreliable
links [15].

As a result of the complex nature of these solutions, work on mesh networks tends to
simplify other aspects of network design, for instance by using homogeneous single-antenna
nodes and fixing the entire network to a single bitrate and uniform transmit power, so that
they only have to probe packet delivery at a single rate. For the example case of network
coding, one recent extension added the ability to choose between only two 802.11b rates [80],
handling only the state of Wi-Fi in 1997 without many rates, OFDM, or MIMO. Another
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proposed a distributed probing framework to handle concurrent rate adaptation, evaluated
it using simulation only [63]. Incorporating my Effective SNR model would simplify the
channel estimation components of these schemes and enable them to handle the broad
configuration space posed in heterogeneous MIMO and OFDM networks.

9.4 Follow-on Research

Other authors have used my CSI measurement tool and Effective SNR models for applica-
tions that go beyond the ones described in this thesis. I describe these projects here because
they are related to the work in my thesis. They highlight the value to the community of
refining and releasing my research prototype [37].

My CSI measurement tool has been used independently of my Effective SNR model
in several projects. Researchers at Duke University and the Hong Kong University of
Science and Technology have built three systems [100, 102, 124] that use CSI information
for indoor localization. Researchers at Intel Corporation and at Carnegie Mellon University
have incorporated measurements taken with my prototype into their work on building
accurate models of wireless channels [85] and better emulating them (in the emulator by
Judd et al. [18, 54]). In the context of improving rates, a group at the University of Texas at
Austin used CSI measurements to design techniques that better take advantage of frequency
diversity [13].

My Effective SNR model has been used in two ways. First, it has been adopted as the
rate selection algorithm in recent projects that use software radios to conduct research on
802.11n [70], as these platforms enable the necessary CSI to be exposed. Second, in the
area of better handling the block-oriented nature of 802.11e/802.11n protocols with packet
batching [112], researchers have used my Effective SNR model to forecast better predictions
of future bitrates in highly mobile wireless channels [101].
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Chapter 10

CONCLUSIONS AND FUTURE WORK

Modern Wi-Fi (IEEE 802.11n) devices can provide flexible, portable, high-performance
connectivity at low cost. This unprecedented functionality is poised to enable a new class
of rich applications built by combining functionality from many devices. The key missing
component is a network connectivity layer that “just works”, providing good performance
overall and quickly adapting to changing application demands and mobile wireless envi-
ronments.

There are two components to such a network layer. The first is a protocol to connect the
devices logically. For 802.11n, this is readily available in the form of Wi-Fi Direct [122], a
recently standardized specification for building wireless peer-to-peer networks targeted at
these applications. Support for Wi-Fi Direct is actively being developed in major consumer
operating systems including Linux, Mac OS X, Windows, and Android.

The focus of my thesis is on the second key component: A way to configure the physical
layer parameters and network topology to best meet application needs. The nature of
modern wireless technology and heterogeneity of wireless devices combined with the
inherent multi-device coordination makes this a hard problem. There is a large number of
possible configurations from which the network must choose a good operating point.

In this thesis, I have demonstrated that my Effective SNR model provides a practical
mechanism to quickly evaluate how well configurations work, which can be used to effi-
ciently configure the physical layer. I have also shown that it can flexibly handle a wide
variety of configuration problems and parameters that no prior approaches considered in
tandem.

In this chapter I summarize my thesis and its contributions and present next steps for
this work.

10.1 Thesis and Contributions

My thesis is that it is possible to rapidly and accurately predict how well different configurations
of MIMO and OFDM wireless links will perform in practice, using a small set of wireless channel
measurements. I demonstrated this thesis by building an Effective SNR-based model for
wireless networks and evaluating it in the context of IEEE 802.11n.

My Effective SNR model can evaluate a particular physical-layer configuration using a
simple interface. The model takes as input a single MIMO and OFDM channel measurement,
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a target set of transmitter and receiver device configurations, and produces an estimate of
how well that combination will deliver packets. This flexible API can express a wide class
of configuration tasks, as illustrated by the algorithms I presented in Chapter 6, Chapter 7,
and Chapter 8. In particular, I applied my Effective SNR model to rate selection, antenna
selection, joint transmit power and rate control, access point selection, channel selection,
and relay selection. I also showed how to use CSI to determine whether a wireless device is
mobile.

I demonstrated that this model is practical; I presented data on its low computational
overhead and implemented it on commodity wireless hardware. My model uses measure-
ments already taken by devices in order to receive packets, and can compute its output in
much less time (4µs) than it takes to transmit a packet (at least 48µs). In most cases, only a
few bytes that represent configuration decisions need to be exchanged, such as a receiver
feeding back a particular requested rate to a transmitter. My detailed prototype evaluation
of the model in a wide variety of configuration problems provides experimental proof that
the model is practical and accurate for real devices operating in real wireless channels.

My specific contributions are as follows:

• I developed a model that accurately predicts the error performance of different MIMO
and OFDM configurations on wireless channels. This model is flexible to support a
wide variety of transmitter and receiver device capabilities, device implementations, and
configuration problems. I presented an implementation of my model using a commodity
802.11n wireless device that demonstrates its feasibility in practice and handles the
practical considerations of operation over real links using real, non-ideal hardware. This
includes a detailed experimental evaluation of my system that shows that this model
accurately predicts packet delivery over real 802.11n wireless links in practice.

• I detailed how to use this model in a system that can solve a large number and variety of
configuration problems similar to those described in Section 1.1. I evaluated this system
in the context of a wide variety of 802.11n configuration problems. These evaluations
show that the predictions output by my model lead to good performance in practice, and
exceed the performance of prior probe-based and RSSI-based approaches.

• As part of my thesis I have produced an 802.11n research platform based on open-source
Linux kernel drivers, open-source application code, and commodity Intel 802.11n devices
using closed-source firmware that I customized. I have released this tool publicly, and at
the time of writing it is in use at 23 universities, research labs, and corporations.
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10.2 Future Work

In this section, I consider paths for future research. First, I think Effective SNR provides a
path to building a high-performance networking layer that works well, and would like to
pursue this. Second, I present three further configuration problems that I believe Effective
SNR can help solve, but which I have not yet validated.

10.2.1 Using Effective SNR in Practical Systems and Protocols

My thesis suggests that it will be possible to build a high-performance networking layer
that “just works”. While my practical Effective SNR model is a step in that direction, much
work remains to be done. I proposed several different ways that my model could be used,
e.g., via computation at the receiver side or transmitter side of a link, but there is still a large
step to reducing it to practice.

One place to start is by integrating my model into control algorithms for Wi-Fi Direct
networks. Open source Wi-Fi Direct implementations are close to being refined enough
to support experiments. Building a working combined system would provide invaluable
practical experience and research lessons. One key problem includes identifying the cases
where Effective SNR results in poor choices (e.g., the few cases where Effective SNR chooses
poorly performing access points) and working around them to provide good performance
in practice. I discuss a few more important tasks below.

10.2.2 Spatial Reuse

Coping with interference is an important problem in wireless networks, and one that I have
not yet solved. An important problem for further research is understanding and managing
spatial reuse, that is, understanding when multiple transmitters can send concurrently on
the same spectrum. This problem is the subject of great importance in today’s AP wireless
networks, as systems become increasingly dense. This problem will likely be ameliorated to
some extent in future wireless networks that can take advantage of multiple channels, but
interference will always be a primary limiting factor in scaling networks.

Existing work has shown large gains from spatial reuse, especially in the area of eliminat-
ing corner cases of hidden terminals that can degrade link performance to almost nothing.
Today’s solutions use expensive distributed coordination mechanisms (i.e., RTS/CTS [58])
with large overheads that are often disabled in practice, and today’s research proposals on
spatial reuse for Wi-Fi [106,121] have simply fixed the entire network to a single rate during
experiments because of the large search space.

Work in communications theory has defined an Effective SINR notion that extends
the Effective SNR to take interference into account. These models typically assume that
interference, like noise, is modeled by the AWGN model. However, I believe that it will not
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be this simple in practice. One reason is that interference is not really equivalent to noise,
but is frequency- and spatially-selective as well. Second, how to extract good performance
from real Wi-Fi devices in persistent interference is not well-understood. Extending my
model to support a practical version of this notion would likely be useful.

10.2.3 Saving Energy with Effective SNR

Effective SNR could be highly integrated into the development of better methods to manage
the power consumption of battery-operated devices. In particular, clients could select access
points or relays with the express aim of minimizing wake time. By choosing a close relay
that uses fast rates, a client can spend less time awake. By disabling receive antennas on the
mobile device and using advanced mechanisms such as beamforming on the transmitter,
the client can make further power savings. I highlighted the importance of these 802.11n
parameters in an earlier measurement study [34], but have not shown how to optimize
them. I believe that my Effective SNR model can be used in conjunction with power-aware
metric functions such as that described in Section 4.3.2, but this solution has not yet been
shown to work well in practice.

10.2.4 Practical Benefits of Beamforming

Transmit beamforming is a well-studied area of research in communications theory. Most
theoretical systems aim to optimize Shannon capacity assuming ideal hardware. In this
case, they use the well known water-filling algorithm [115: p. 183] to allocate power across
subchannels proportional to SNR. However, this approach may be ineffective in practice
because real hardware does not support these idealized requirements.

Real transmit hardware can only support signals with a particular dynamic range, and
so cannot perfectly support water-filling. Secondly, in practical systems like 802.11, different
subchannels are modulated identically and thus cannot make good use of the asymmetric
power across subchannels. Work is needed to understand the practical constraints of real
hardware, and then to design a beamforming algorithm for 802.11n that limits the space of
beamforming matrices to account for these factors. I believe this problem is interesting in its
own right, and that my Effective SNR model can be used to evaluate allocations of power
with the goal of minimizing bit errors and finding the best working modulation and coding
scheme across all subchannels.

10.3 Summary

Wireless systems such as 802.11 are configured today using probing for rate adapta-
tion and for a host of other applications. This probing is the standard strategy because
communications-theoretic approaches to configuring network parameters are considered
too inaccurate to work well. However, in my thesis I have shown that it is indeed possible
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to connect theory back to real wireless systems operating over real wireless channels. I
have presented an Effective SNR model for wireless systems that use modern physical layer
techniques like MIMO and OFDM, and I have shown that it works well for IEEE 802.11n.
Going forward, I hope and expect that Effective SNR will be integrated into the control
plane for future wireless networks and help enable the next generation of device-to-device
wireless applications.
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