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ABSTRACT
We consider a case study using SQL-as-a-Service to support
“instant analysis” of weakly structured relational data at a
multi-investigator science retreat. Here, “weakly structured”
means tabular, rows-and-columns datasets that share some
common context, but that have limited a priori agreement
on file formats, relationships, types, schemas, metadata, or
semantics. In this case study, the data were acquired from
hundreds of distinct locations during a multi-day oceano-
graphic cruise using a variety of physical, biological, and
chemical sensors and assays. Months after the cruise when
preliminary data processing was complete, 40+ researchers
from a variety of disciplines participated in a two-day “data
synthesis workshop.” At this workshop, two computer sci-
entists used a web-based query-as-a-service platform called
SQLShare to perform“SQL stenography”: capturing the scien-
tific discussion in real time to integrate data, test hypotheses,
and populate visualizations to then inform and enhance fur-
ther discussion. In this “field test” of our technology and
approach, we found that it was not only feasible to support
interactive science Q&A with essentially pure SQL, but that
we significantly increased the value of the “face time” at the
meeting: researchers from different fields were able to validate
assumptions and resolve ambiguity about each others’ fields.
As a result, new science emerged from a meeting that was
originally just a planning meeting. In this paper, we describe
the details of this experiment, discuss our major findings,
and lay out a new research agenda for collaborative science
database services.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Scientific Databases

General Terms
Design, Experimentation, Human Factors, Management

1. INTRODUCTION
Data analysis is replacing data acquisition as the bottleneck
to scientific discovery. The challenges associated with high-
volume data have received significant attention [10], but the
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challenges related to integrating weakly structured, high-
variety data—hundreds of datasets with hundreds of columns
and no a priori agreement on format or semantics—are under-
studied. Even at small scales, our collaborators report that
these situations require them to spend up to 90% of their
time on data handling tasks that have little to do with the
science [5].

We posit that the use of declarative query languages can sig-
nificantly reduce the overhead of working with weakly struc-
tured relational data, allowing real-time, discussion-oriented
scientific Q&A as opposed to relying on offline programming.
To test this hypothesis, we have designed and deployed a
web-based query-as-a-service system called SQLShare [5]1

that emphasizes a simple Upload/Query/Share workflow over
heavyweight database engineering and administration tasks.
Data can be uploaded to SQLShare “as is” and queried di-
rectly; a basic schema is inferred from the column headers and
data types. Queries can be saved as views and shared with
colleagues by exchanging URLs. In prior work, we found that
this approach can capture most relevant tasks and improve
productivity for distributed, asynchronous collaboration [6].

In this paper, we consider whether our query-as-a-service
approach can also be used to improve productivity in real-
time, synchronous, face-to-face collaboration, even without
assuming that the data has been integrated into some pre-
engineered schema. The challenges are significant: data must
be cleaned and integrated, and science questions must be
disambiguated and encoded in SQL, all on-the-fly. When
successful, this level of interactivity for scientific Q&A is not
just faster, it is a different experience. The availability of
instant results to questions arising from organic discussion
changes the nature of the meeting: instead of assigning action
items for investigators to complete offline when the “trail is
cold”, the researchers can test hypotheses and explore the
implications online, during the meeting, while the ideas are
fresh and everyone’s perspective can be incorporated—“data-
driven discussion.”

We test this approach in the context of the GeoMICS project [1],
a multi-institution, multi-disciplinary oceanographic collabo-
ration between geochemists and molecular ecologists spear-
headed by co-author Armbrust. The team acquired data
during a research cruise in May 2012 in the northeast Pacific
Ocean. The overall purpose of the cruise was two-fold. The
scientific goal of the cruise was to study a well-defined tran-
sition zone between coastal and open-ocean waters [9]. To

1https://sqlshare.escience.washington.edu/
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do this, the PIs employed a battery of acoustic and optical
sensors and sample-based measurement techniques to collect
hundreds of independent physical, biological, and chemical
variables at hundreds of discrete locations within and on
either side of the transition zone. The second goal of the
cruise was collaborative: to bring together “two largely in-
dependently operating research communities—geochemists
and molecular ecologists” [1], for the first time, in order to
study the same types of biogeochemical features in the ocean
through the lens of very different types of data and analy-
ses. In conversation, the scientists from different disciplines
explicitly stated that they intended to “prove that we can
work together” so that funding agencies would support these
types of collaborations on program scale [1].

The second stage of the project was a data synthesis work-
shop hosted in February 2013, only nine months after the
initial cruise. One of the requirements of participation in the
GeoMICS project was that all participants agree to complete
sample processing in a timely manner and share the data
broadly within the group; this workshop was the first test of
this mandate. Before the meeting, the team prepared prelim-
inary datasets (primarily spreadsheets and delimited ASCII
files) and centralized them via Dropbox. These data were
uploaded as-is into SQLShare [5] by the computer science
team; each file (or sheet) became a distinct table with at-
tribute types assigned automatically by SQLShare. At this
stage, no attempt was made to integrate the data or prepare
some unified schema.

Also prior to the meeting, the participants were asked to
submit English questions representing their science interests,
an adaptation of the “20 questions” requirements-gathering
methodology proposed by Jim Gray [4]. These preliminary
questions helped resolve ambiguities and expose relationships
in the raw data, and they served to engage with the science
team and generate enthusiasm in the lead up to the meeting.

During the meeting, the group of more than 40 investigators
and students came together to compare, contrast, and com-
bine their data and insights, both within each discipline and,
more importantly, across disciplines. To conduct the “field
test” of our query-as-a-service technology and our schema-
free approach, two computer science co-authors also attended
to act as “SQL stenographers”: We translated questions into
SQL in real-time in response to the discussion, while working
with the scientists one-on-one and in groups as appropriate to
clarify the science and resolve ambiguity. Some quantitative
questions were answered directly in SQLShare (“What were
the top five proteins expressed at each station?”). For less
precise questions (“What is the relationship between tem-
perature and salinity?”), we generated visualizations using
domain-specific tools that we linked to SQLShare program-
matically in the days leading up to the event.

In this paper, we describe the science, the data, the queries,
and our findings from this experiment, concluding that on-the-
fly integration and analysis is feasible with essentially pure
SQL, despite the lack of an engineered schema, the challenges
of interdisciplinary communication, and the bleeding-edge
science. In particular, we found the web-based query-as-a-
service system to be critical: Given the SQLShare UI, we were
able to refactor common queries into reusable views, organize
the views using simple tagging schemes, and keep track
of recent results during discussions. Given the SQLShare

REST interfaces, we were able to avoid writing any new code
to parse unusual file formats, and we were able to export
data automatically to client applications preferred by the
researchers. Overall, the combination of the technology and
the “social protocol” used to collect data and queries by the
lead PI were instrumental in the success of the experiment.

2. GEOMICS SCIENCE
In this section, we describe the scientific motivation behind
the GeoMICS project.

Over the last three decades, extensive oceanographic surveys
have been conducted to improve the understanding of large-
scale circulation and biogeochemical cycles in the marine
environment. The World Ocean Circulation Experiment, the
Joint Global Ocean Flux and GEOTRACES programs, along
with many other studies, demonstrate that microbial commu-
nities drive the biogeochemical cycling of the major elements
(e.g., carbon, nitrogen, phosphorus, sulfur) on our planet.
The results of these studies indicate that marine microbes
generate and recycle about half of the organic carbon pro-
duced on Earth and carry out all nitrogen fixation, ammonia
oxidation, denitrification, sulfur reduction/oxidation, and
mediate the distribution and speciation of bioactive metals
within the oceans. Furthermore, there is now evidence for the
existence of biogeochemical oceanic provinces where large-
scale chemical and physical features dictate microbial activity
and the resulting elemental cycling. Recent data indicate that
the oceans are undergoing rapid changes: ocean waters are
warming, wind patterns are shifting, and ocean circulation is
changing, together shifting turbulent mixing and delivery of
nutrients from deep to surface waters. Such dramatic changes
underlie an urgent need to identify the processes and quantify
fluxes that control the biogeochemical cycles in the ocean.
Understanding the factors that dictate province boundaries
will allow predictions of how these regions may expand or
contract under future ocean conditions.

To explore these questions, two largely independent op-
erating research communities—geochemists and molecular
ecologists—conducted a cruise to the northeast Pacific Ocean
to sample the province boundary between offshore High-
Nitrate, Low-Chlorophyll and coastal waters. The aim was
to examine the interactions between changes in microbial
diversity, community functions, and chemical features. The
transition zone between these two oceanographic provinces is
characterized by a strong gradient in biogeochemical proper-
ties and high biological activity. The oceanographers collected
an unprecedented suite of biological samples (metagenomes,
metatranscriptomes, metaproteomes and metabolomics of
viruses, bacteria and phytoplankton) and chemical measure-
ments (nutrients and dissolved and suspended particulate
iron, copper, zinc, manganese, cobalt, nickel and cadmium)
from surface to seafloor. Together, these samples will help
elucidate the interactions between changes in microbial diver-
sity, community functions, and chemical features at relevant
spatial resolution.

The data collected from this cruise, and the collaborative
process by which the data will be analyzed, poses a challenge
for conventional database technology. These highly inter-
disciplinary, highly collaborative projects are characterized
by extremely heterogeneous data sources, diverse user back-
grounds and skill sets, and a need for real-time collaborative



Figure 1: An example visualization product from the workshop. The map at left shows the locations of the
seven measurement stations visited during the cruise, labeled P1 through P8 (excluding P7) from east to west.
The plot at right shows the ratio of iron (Fe) concentration to nitrate (NO3) concentrations throughout cruise
area to a depth of 300 m. To generate this figure, we used SQLShare to join three disparate datasets—metal
concentrations; nutrient concentrations; and an external bathymetry dataset—and then compute the Fe/NO3

ratio using NULL-and-0-aware division. We then used our Ocean Data View adaptor webapp to download
the derived dataset, imported it into ODV, and generated this visualization. In the plot at right, each black
dot shows locations where the ratio was defined, and the colors are automatically interpolated by ODV.

analysis. This paper represents an initial case study testing
a query-as-a-service platform.

3. METHODOLOGY
In preparation for and during the data synthesis workshop
planned by the researchers, the team applied the following
methodology.

A minimal standardized data template was prepared and
mailed to all GeoMICS participants. Each row of the tem-
plate includes six attributes (Event, Latitude, Longitude,
Station, Depth, Source) that together represent a specific
sampling event, the location, the depth below the surface in
meters, and the instrument used. These semantics were not
enforced or validated; as a result, many datasets required
some transformation before they could be integrated.

After the distributing the template, the Lead PI sent an
email asking all GeoMICS participants to upload their data
to Dropbox. Just before the workshop, roughly 80% of partic-
ipants had responded and provided their data. Once the data
appeared in Dropbox or were sent by email, we uploaded
the data sets to SQLShare, which parsed the basic structure
of the data and inferred column types. While most data
was ingested into SQLShare automatically, some datasets ex-
posed bugs in SQLShare’s parsing capabilities: illegal column
names containing bracket characters needed to be replaced
offline, for example.

Once the data was uploaded, additional formatting and clean-
ing steps were performed in SQL directly. For example, nu-
meric values were suffixed with their units, making SQLShare
interpret the value as a string. Interestingly, once the re-
searchers saw their data in SQLShare and recognized the abil-
ity to combine data from different sources, we were swamped
with emails asking for help “attaching” data. These questions
exposed some misunderstandings—some researchers believed
that re-uploading data was the only way to combine two
datasets. The ability to write queries to accomplish the same
task was not immediately obvious.

The PI also solicited representative questions capturing sci-
ence goals; this process was modeled after Jim Gray’s “20

Figure 2: Questions that came up during breakout
sessions were translated into SQL queries in real
time, without requiring any up-front schema design
or application building efforts. Here, the lead author
presents the iron/nitrate ratio plot (Figure 1) to re-
searchers from a variety of backgrounds.

questions” approach [4]. We described how they were evalu-
ated in Section 6.

To facilitate analysis using tools familiar to the researchers,
we also built client applications against SQLShare’s REST
API (which took approximately one day—a very low level of
effort.) These tools are described in more detail in Section 4.

The meeting was organized as a plenary session on the first
day, then two breakout sessions on the second day (one by
discipline, and another intentionally interdisciplinary). On
the first day of the workshop, we gave an introductory presen-
tation to the group on SQLShare, but offered no additional
training in either SQLShare or SQL. We relied entirely on
hands-on support during the breakout sessions (Figure 2).
The results of these sessions and a discussion of lessons
learned are provided in Section 7.

4. SQLSHARE TECHNOLOGY
At the University of Washington eScience Institute, along
with collaborators at Portland State University and the
University of Michigan, we are developing a new “deliv-



ery vector” for relational database technology called SQL-
Share, and studying how it can be used to satisfy both
scientific workflow requirements and ad hoc interactive anal-
ysis. SQLShare is a web-based query-as-a-service system
that eliminates the initial setup costs associated with con-
ventional database projects and instead emphasizes a sim-
ple Upload/Query/Share protocol: users upload their table-
structured files through a browser (or programmatically via
an API) and can immediately query them using SQL—no
schema design, no preprocessing, no database administrators.
SQLShare users derive new datasets by writing and saving
SQL queries. Each derived dataset is managed as a view
in the underlying database: a named, permanently stored
query. Each dataset is also equipped with descriptive meta-
data. Everything in SQLShare is accomplished by writing
and sharing views: Users can clean data, assess quality, stan-
dardize units, integrate data from multiple sources, attach
metadata, protect sensitive data, and publish results.

SQLShare has three components, all of which are cloud-
hosted: a web-based UI, a REST web service, and a database
backend. The UI is a Django Python application (a web
framework similar to Ruby on Rails), and hosted on Amazon
Web Services. The UI communicates with the backend exclu-
sively through REST calls, ensuring that all client tools have
full access to all features. The web service is implemented on
Microsoft Azure as (one or more) Web Roles. The database
is implemented using Microsoft’s SQL Azure system, which
is very similar to Microsoft’s SQL Server platform.

Version 1 of SQLShare was completed in 2010 and has been
in use by scientists at UW and elsewhere since that time. To
complement and extend its functionality for this experiment,
we also produced several custom tools in the days leading up
to the workshop that interact with SQLShare via the REST
API. These tools were designed to add domain-specific inter-
faces for oceanography to SQLShare; to provide online, ad
hoc, scriptable visualizations; and for assistance in writing
SQL statements to execute data cleaning and integration
tasks. Some of these tools served as early prototypes for fea-
tures that might later become core SQLShare functionality.

4.1 SQL generators for common patterns
An advantage of using SQL for science is that the underly-
ing relational algebra is sufficient to express basic cleaning,
integration, and analysis operations without having to write
code in any external language. However, some tasks are te-
dious and error-prone to implement in SQL, typically because
they involve working with long lists of explicit column refer-
ences. In these cases, we developed scripts to generate SQL
templates for specific idioms.

One script creates a view that contains all columns from
a source table with a single column renamed. There is no
mechanism in standard SQL to declaratively refer to a set of
columns; the asterisk is expanded to “all columns”, but there
is no corresponding syntax meaning “all columns except this
one,” for example. As a result, each and every column must be
explicitly mentioned in the SELECT clause even if we only want
to rename one. But given simple syntactic sugar to expand
SELECT * FROM TABLE into SELECT time, location, temp

FROM TABLE, a user can easily modify the resulting template
to rename temp to, say, temp AS surface_temperature.

A second script provides a global find and replace facility.

NULL values are frequently represented by some domain- or
researcher-specific sentinel value in the data: oceanographers
often use −99 to indicate an invalid or missing measure-
ment, for example. Replacing NULL values in a single column
involves a simple CASE expression (or vendor-specific func-
tion), but replacing values in every column involves repetitive
copying and pasting. This manual step was eliminated by
automatically generating the appropriate queries to replace
values in every column in which they appear.

4.2 Ocean Data View adaptor
Oceanographers commonly visualize data in a domain-specific
tool called Ocean Data View (ODV).2 ODV accepts plain
rows-and-columns CSV or text files as input; however the
process of importing an arbitrary file is time-consuming and
manually intensive because the user must associate each
column with a known data type. Any errors made during
this import process typically cause users to abandon their
progress and start over from the beginning; we noticed at
least two of these aborted queries during the workshop when
users attempted to import raw datasets.

This manual process can be avoided if the input file has
a shape that ODV recognizes. In particular, ODV imposes
restrictions on the order and name of relevant columns: The
name of the cruise, the station of the measurement, lati-
tude, longitude, and depth must be located at the beginning
of the table, and ODV will not detect that a field called
‘Latitude..Decimal.deg.’ is a sanitized form of ‘Latitude (Dec-
imal deg)’ produced by R, and the automatic import will
fail. Using the SQLShare REST interface, however, we can
automatically inspect the columns of a dataset, determine
whether it is compatible with ODV, and then programmati-
cally generate the SQL statement to permute and rename
columns so that the resulting dataset can be automatically
imported into ODV. We packaged this logic into a Python
web application, which we then deployed on a free Google
App Engine instance. This tool enabled anyone at the work-
shop to visit the application, enter the name of an original
or derived dataset, and download a transformed version of
that dataset ready for automatic import into ODV. This tool
enabled users, some of whom may have never logged into
SQLShare nor seen SQL code, to easily import, visualize,
and analyze data without any input or assistance from the
computer scientists at the workshop.

SQLShare’s REST interface made our tool development par-
ticularly easy: an author who had never used REST before
was able to develop both of these tools from concept to
production in about twelve hours.

4.3 Sage notebook adaptor
We extended SQLShare with support for basic visualizations
using Sage. Sage is an open source bundle of mathematics
libraries and programs, intended to provide many features of
well known programs such as R, Mathematica and MATLAB.
We set up a Sage Notebook Server on an Amazon Web
Services instance and provided a function get table that
uses SQLShare’s REST API to download a table and make
it directly accessible in the notebook. The entire design,
development, and deployment process was completed in less
than an hour.

2http://odv.awi.de/
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Figure 3: The Sage Notebook runs in the Amazon
Cloud. In this example, we use the SQLShare REST
API to download tables, and simple Python com-
mands to plot the relationship between two columns.

Figure 4: The top of the rosette of Niskin bottles,
a water sampling apparatus. These caps snap shut,
trapping the water inside as the sensor package de-
scends through the water column. Each bottle can
be closed electronically at a different depth, and cap-
tures 10 L of water, enough for a variety of chemical
and biological assays.

5. THE DATA
In this section, we describe the measurements made during
the cruise and then discuss the characteristics of the processed
datasets that were available for the data synthesis workshop.

5.1 Measurements
Three categories of measurements were collected:

Underway data were collected by analyzing uncontami-
nated seawater flowing continuously through a sensing appa-
ratus mounted underneath the vessel at a fixed depth of five
meters below the surface. This platform was equipped with
a thermosalinograph (measuring salinity and temperature,
as well as conductivity) and a SeaFlow flow cytometer [12]
that uses a laser to count and classify the organisms in the
water. Other data include latitude and longitude from the
ship’s navigation system, and atmospheric factors such as
air temperature, humidity, and barometric pressure.

Sample data is data that comes from analysis of water
samples gathered when the ship was anchored on station.
The water was collected using one of three techniques:
• In a cast, a rosette of up to twenty-four empty 10 Lbottles

(Figure 4) were lowered to a specific depth, while attached
instruments continuously sampled data such as temperature,
salinity, fluorescence, and nitrate concentration. Based on
this depth profile, where measurements were taken at other
stations, and the intended use of the water samples, the
scientists then chose the depths and quantities of samples
to collect in order to capture the features of interest. The
rosette was then raised to the surface, while each bottle shut
at its chosen depth to capture a snapshot of the water at
that specific time and location.

• A surface pump continuously pumped water from 5 m
below the surface up to the deck of the ship. Some of the
water samples were filtered through various size filters to
collect particles and organisms of particular sizes, and in
other cases, particle-free seawater was gathered.

• A special McLane pump was configured with filters of
chosen sizes, lowered to a specified depth, and then filtered
water continuously until either the exiting water pressure
dropped (i.e., the filter clogged because it had collected
enough samples) or a fixed time period expired. The McLane
pump emulates the surface pump operation, but at depth.

While a few samples were processed in a lab space of the
ship, most samples—typically the filtered organic samples
for genomics, proteomics, or transcriptomics (collectively re-
ferred to as “-omics”)—were frozen, catalogued, and analyzed
in the individual scientists’ lab facilities. In addition to the
features described above, concentrations of trace metals (cop-
per, iron, zinc, cadmium, manganese, nickel and cobalt) and
inorganic nutrients (nitrate, nitrite, ammonium, phosphate,
silicic acid, dissolved inorganic carbon, and biogenic silica)
were measured. For all sample types, multiple samples were
often collected at each station for the purposes of scaling up
the number of samples or repeatability of the measurements.

Finally, cast data were collected from the instruments at-
tached to the rosettes lowered during casts. These data give
a view through the water column of physical and biological
properties. Like the sample data, these data are collected at
similar times and the same location, but they capture the
entire water column rather than a few discrete depths.

5.2 Ingested Data
In total, 49 original datasets were available and uploaded
to SQLShare for use at the data synthesis workshop. These
data represent preliminary offline processing of most of the
physical and chemical variables. In contrast, only a few of the
biological datasets were prepared in time for the workshop in
part due to the labor- and CPU-resource-intensive processing
steps to process the samples. Additionally, the biological
data were difficult to integrate in their existing form due to
incomplete information; we discuss this issue in more detail
in Section 5. Finally, there was some resistance to sharing
data before it was fully quality controlled.

Organization. The GeoMICS data synthesis workshop was
distinctive in the sense that the cruise had been planned with
collaboration in mind.3 To this end, every researcher was
instructed to associate each measurement with a shared key.
In particular, the following combination of four factors can

3This project was unusual: While nearly all cruises host the
experiments of many independent researchers, these different
measurements are typically never integrated!
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Figure 5: The number of rows and columns in the 49
original datasets. Dataset size covers seven orders of
magnitude from 1 to 10 million rows. The number of
columns ranges from 2 to 69: most datasets measure
few variables, but several measure 30 or more.

uniquely identify each sample: which Station the ship was at,
which Instrument collected the data, from what Depth the
sample was taken, and during which Event—a cast, a position
of the surface pump, a lowering of the McLane pump, etc.—
the sample was gathered. The science team promoted the
concept of a unique label formed by concatenating the four
attributes participating as a key, but we typically ignored
this surrogate key (which violates first normal form) and
referred to the composite key directly in our queries. In
addition to the five columns described, the template also
included a Latitude and Longitude column containing the
locations of the Stations. Though redundant, these columns
were intended to aid scientists in linking their data with the
template and as a sanity check in case the human-generated
Station label on a dataset was incorrect.

To collect data for the workshop, an Excel spreadsheet con-
taining all valid four-column-keys was distributed to the
researchers, who appended the columns containing their data
and then uploaded the datasets to a shared repository setup
by the Lead PI. Some datasets used only a subset of the
key: the -omics data were collected only at the surface using
the surface pumps and hence included only the Station num-
ber, and the underway data used Latitude and Longitude as
keys because they were collected at all locations, not just on
Station.

Example. Table 1 shows a partial subset of a trace metal
dataset uploaded to SQLShare. The left four columns give
the composite key identifying the cast, station, depth and
instrument at which the water analyzed to obtain these values
was sampled. The right four columns show the concentrations
of iron (Fe) and copper (Cu), as well as error bars given
by their standard deviations. This snapshot is only part
of the entire table; the original dataset has 15 columns,
which included some redundant key information (Latitude,
Longitude, and Label) and the concentrations of zinc and
manganese, and 74 rows which included additional depths
and stations. During science discussions at the workshop,
this dataset was joined with other datasets to generate the
visualizations of both Figure 1 and Figure 8.

Characteristics. Figure 5 shows the distribution of the
number of columns and rows in the 49 datasets collected.
The number of rows indicate how many measurements each
dataset contains, ranging from 1 row to 10 million rows—a
span of seven orders of magnitude. The input data contain
both measurements collected during the cruise and external

datasets loaded to facilitate analysis. The larger datasets typ-
ically came from either continuously-sampled underway data
or the biological protein or gene sequence information ex-
tracted from stored samples, while the smaller datasets were
associated with measurements taken infrequently through-
out the cruise, such as instrument calibration. Similarly,
some external databases that we imported are very small;
the bathymetry dataset providing the depth of each station
was only a few rows. The largest dataset was a BLAST
function map, which maps database-specific gene IDs to
human-generated descriptions of their biological functions.

The number of columns indicates the number of variables
measured in each dataset. Many of these datasets only mea-
sure a few quantities: over 75% of the input datasets have
20 or fewer columns, but several datasets cover dozens of
variables and have up to 69 columns. Datasets with fewer
columns are typically external datasets that do not fit the
template. For instance, the bathymetry dataset above has
only two columns: the Station and the corresponding Depth
of the ocean floor.

5.3 Dataset idiosyncrasies
We uncovered a number of idiosyncrasies in the source data
provided by the scientists. Here are a few examples:

Template misuse: In some datasets, the Latitude and Longi-
tude columns were switched. We suspect this transposition
arose when the creator copied and pasted columns and col-
umn headers from the template into a pre-existing spread-
sheet, rather than copying the data into the template. In
another dataset, the leading ‘P’ was omitted from Station
names, e.g., P8. We were able to repair both these errors by
modifying the wrapper views in SQLShare, in the former case
by expanding SELECT * FROM table to SELECT Latitude

AS Longitude, Longitude AS Latitude, ... FROM table

to swap the column names. In the latter case, SQLShare had
automatically detected that Station contained only integers,
so we had to modify the view to cast it to a VARCHAR and
prepend a ‘P’. In both cases, we caught these problems when
debugging queries in real time (“Why are there no results for
this join?”), and were able to rapidly correct them directly
in SQL.

Embedded tables: Some uploaded spreadsheets contained mul-
tiple “tables.” In a table of protein sequence and BLAST data,
the first 50 or so columns contained data about the proteins
found when sequencing the data and their annotations. To
the right of these columns, the scientist had added aggre-
gate results such as “Given the column identifying the most
specific taxonomic group (e.g., family, genus, species) this
protein is found in, how many copies of the taxa were found?”.
We were able to express these derived tables as views over
the raw data, and then we modified the SQLShare wrapper
to remove those excess columns from the base dataset. This
change highlighted another advantage of SQLShare: the ta-
bles in Excel were not stored as programs, hence the method
by which they were computed was not obvious, and only rep-
resented a snapshot of the source data. In contrast, because
SQLShare stores queries as views, it both documents the
provenance of derived data and automatically stays updated
when the base datasets change. When shown the SQLShare
approach, the researcher who owned the data recognized the
value of the approach and was “excited to see more.”



Event Station Depth (m) Source Total Fe (nM) Stdev Fe Total Cu (nM) Stdev Cu . . .

1004 P8 20 Niskin 0.265 0.012 1.389 0.036 . . .
1004 P8 33 Niskin 0.166 0.005 1.052 0.01 . . .
1004 P8 50 Niskin 0.164 0.027 1.089 0.007 . . .

Table 1: A sample of the first few rows and columns of a dataset containing the measured trace metal concen-
trations. The left four columns give the composite key identifying the cast, station, depth, and instrument
at which the water used to measure these values was sampled. The right four columns show the measured
concentrations of iron (Fe) and copper (Cu), as well as standard deviations on these values. These data,
provided by Jagruti Vedamati, were used in generating both Figure 1 and Figure 8 live at the workshop.

Data in file names: Data was frequently embedded in the
names of uploaded files. For example, recall that cast data
from thermosalinographs (TSGs) and other instruments are
collected continuously during every lowering and raising
of a rosette. The natural procedure in this case was for
scientists to save one file for every individual cast (identi-
fied by the Event column in our composite key). When up-
loaded into SQLShare, these files were named ‘event1001.cnv’,
‘event1004.cnv’, etc. (CNV is a proprietary format used by
Sea-Bird Electronics in thermosalinographs and other sen-
sors). We were able to combine these datasets using a UNION
ALL statement of the form SELECT *,1001 AS event from

[event1001.cnv] UNION ALL ... to form a single unified
cast data table.

Excessive processing: In several cases, uploaded datasets were
overly pre-processed. The protein dataset referred above was
actually a composite of many datasets concatenated together.
The initial few columns contained a protein group identifier,
the number of unique peptides on that protein, and the count
of how many times it was found in the sample. The next
6 columns contained the top 3 functional annotations (i.e.,
human descriptions of what scientists believe that protein
does) associated with that protein and the relative abundance
of the selected function among all associated functions. When
asked why he chose to do it this way, the scientist admitted
that 3 functional annotations was an arbitrary choice, but
that he needed to make some choice to be able to fit the data
into a usable spreadsheet form. In this case, we wished we
had the raw data: we could have stored the initial columns
describing the sequenced protein counts separately from the
functional annotation database, and we could create one
or more views to produce the top 3 annotations, the top 5
annotations, or even vary the number of annotations based
on a per-protein significance criterion.

6. PREPARING FOR THE WORKSHOP
In advance of the workshop, the Lead PI solicited English
questions from the project participants. One intention was
to get the scientists into a preparatory mindset for collab-
oration and integration at the workshop. The second goal
was to familiarize the SQL team with both the uploaded
datasets and the domain terminology we would encounter
at the meeting. Translating questions in SQLShare before
the meeting enabled us to better assimilate into the science
discussions and more easily express queries in SQL in real
time.

The responses were collected in a shared Google Doc. Before
the workshop, there were 6 queries; after the workshop we
had received more than 30. In Table 2, we present a few
examples ordered roughly in increasing complexity.

In this section, we describe the process by which we answered
these English questions using SQL.

Phase I: Translating existing analyses. The week before
the meeting, the science and SQL teams at UW met face-
to-face and electronically. We reviewed the organization of
the data, examined two datasets, and discussed the (intra-
dataset) analyses the scientists had already performed, such
as the protein taxa counts found in the embedded tables
described in Section 5. We were able to translate existing
analyses into SQL easily, as these queries mapped directly
into group-by and aggregate statements. This phase also
provided an opportunity for the SQL team, who had used
SQLShare only sparingly prior to this meeting, to familiarize
themselves with the system.

Phase II: Answering novel queries. Next, the SQL team
attempted to answer the 6 sample questions using the 30 or so
datasets available (with more coming in). At first, this process
was extremely difficult: datasets were often named for the
category of data (e.g., ‘nutrients’), while questions referred
to features (e.g., ‘phosphate’, ‘nitrate’, or ‘ammonium’). The
names of columns storing a feature and the English words
describing them did not align (e.g., ‘Tot.Fe.nM’ vs. ‘iron
concentration’). Consequently, we began Phase II by opening
each dataset in SQLShare, reading its column names and
looking at a few sample rows, and perhaps performing a
web search to look up certain terms. Next, it was often
unclear by which features datasets should be joined. Two
different datasets will rarely contain measurements using
equal composite keys—only if they were taken by the same
Instrument during the same Event, i.e., using water samples
from the same bottle on the same cast. Is it appropriate to
join measurements from different casts? Does Depth have
to match exactly, or can it be close (and what does “close”
mean)? Many -omics datasets omitted Depth information
entirely; we later learned that these datasets were collected at
5 m depth. As we found in discussion with science colleagues,
in practice, scientists integrate data using Station and Depth,
comparing data from different instruments and from different
casts—but at the same physical location.

Concrete Example: Query 2. This query in Table 2 seeks to
link iron concentrations with iron-related proteins. The data
containing the iron data was easy to find using keyword search
for ‘Fe’—[V2 GEOMICS Fe-Cu-Mn-Zn-Vedamati.csv]—and
we gained confidence in this guess when the units used in
the English query, ‘nm’, nearly matched the apparent units
of the column header, ‘Tot.Fe.nM’.

Next we needed to find and count iron-related proteins. The
protein dataset was one of those we analyzed in Phase I, so we
already knew which dataset to use. However, the functional
annotations in this dataset were human-generated text such



1. What is the relation between Syn. (bacteria, virus, Micromonas) concentration and temperature (salinity)?
2. When the iron concentration is below X nm, how many iron related proteins (based on annotations) are detected?
3. What are top 5 highest concentration organisms based on cell number (based on proteomes, based on genome) at a given
depth or site?
4. Can we use a subset of well-understood phenomena to ‘ground truth’ the GeoMICS approach, documenting (hopefully)
the expected linkages between genes, transcripts, and proteins, on the one hand, and processes and stocks, on the other?
Examples: photosynthesis rate, limiting nutrient, plankton composition, growth rate, etc.

5. What is the correlation between each of the following metals and phosphate? Fe, Cu, Mn and Zn.
6. What is the relation between zinc and cobalt?
7. Can you plot Virus Count vs. Salinity?
8. Combine all data sets, so that we can make sense of them using ODV. Let us start by combining GDGT [Glycerol Dialkyl
Glycerol Tetraether lipids], Carbon, and O2.

Table 2: Example English questions from the scientists in the GeoMICS project. Queries 1–4 are selected
from those solicited before the workshop and Queries 5–8 from among those generated at the workshop.

as “ribosomal protein L5”—How do we determine which of
these are “related to iron”?

We used SQLShare’s interactive querying functionality to
develop this query. We started by filtering the table using the
obvious WHERE clause, Function_1 LIKE '%iron%', and found
10 matches. Next, we added OR Function_1 LIKE '%Fe%'.
This query returned 95 matches, including false matches
such as “Polyribonucleotide nucleotidyltransferase”. Because
of the interactive nature of writing queries in SQLShare, we
spotted the problem instantly: the LIKE operator is case-
insensitive in MS-SQL, so the common transferase-related
proteins would become false positives. We then replaced
this second clause with OR Function_1 LIKE '%Fe[^a-z]%'
to catch instances of the literal ‘Fe’. Though this formula-
tion is imprecise, we observed that it did not result in false
positives. Finally, we added a third clause to catch instances
of “%ferr%”, as in “ferrous” or “ferrodoxin”, which expanded
the result to 19 proteins. By combining across all three func-
tional annotations, the result expanded to 28 rows. Though
this may seem small, this preliminary database of annotated
proteins contains only 3130 rows, so these represent about
1% of all identified proteins.

Having developed a suitable query to identify iron related
proteins, we saved this view as a derived dataset in SQLShare,
[Iron-related proteins]. Creating a separate view isolates the
logic to identify iron related proteins from the rest of Query
2, labels the saved logic as a dataset with a descriptive
name that can be found by keyword search, and enables this
intermediate result to be reused in answering other questions.
Additionally, should we need to amend the clauses in the filter
for more accurate protein identification, this view can be
edited later and the derived views will automatically reflect
the changes.

Finally, we needed to join the iron-related protein data with
the iron concentration data, which entails a simple join be-
tween the two datasets based on station and depth. However,
in this case there were actually no depths that matched:
the -omics protein data was collected 5 m deep, while the
shallowest iron measurements came from 10 m down. We
therefore simply selected the shallowest iron measurement at
each station. The final query we used is shown in Figure 6.
This view defines a dataset that contains, for each station,
the iron concentration and the total count of iron-related
proteins. We also include the depth of the source of each
dataset in case these are useful in later analysis. Note that

WITH SurfaceMetals AS
(SELECT Station,MIN([Depth..m.]) AS MinDepth
FROM [V2_GEOMICS_Fe-Cu-Mn-Zn-Vedamati.csv]
GROUP BY Station)

SELECT iron.Station
, iron.[Tot.Fe.nM.]
, SUM(protein.spectra_counts) AS ProteinSpectra
, protein.[Depth..m.] AS [SurfacePumpDepth..m.]
, iron.[Depth..m.] AS [NiskinDepth..m.]

FROM [V2_GEOMICS_Fe-Cu-Mn-Zn-Vedamati.csv] iron,
[Iron-related_Proteins] protein,
SurfaceMetals

WHERE protein.Station = iron.Station
AND iron.[Depth..m.] = SurfaceMetals.MinDepth
AND SurfaceMetals.Station = iron.Station

GROUP BY iron.Station
, iron.[Tot.Fe.nM.]
, iron.[Depth..m.]
, protein.[Depth..m.]

Figure 6: The SQL to answer Query 2 finds the
relationship between biological expression of iron-
related proteins and the actual concentration of
trace iron in the water.

while this dataset does not directly answer Query 2, for
any concentration value X a trivial SELECT statement will
compute the answer.

Summary and Lessons Learned. In preparation for the
workshop, we familiarized ourself with the oceanographic
datasets and translated some English science questions into
SQL. As exemplified by Query 2, the techniques used to
provide these answers were manifold but were easily mapped
into SQL. Ultimately, we were successful in expressing most
of the science questions available ahead of the workshop in
SQLShare, with the exception of queries, such as Query 4,
that appear too abstract to be answered with SQL.4 In some
cases, talking with scientists enabled us to “compile down”
these abstract queries into concrete questions.

One takeaway from Phase II was that the initial reading of
the sample queries and exploration of the datasets would
have been much faster if done in a tight feedback loop with
the scientists that conducted the experiments. Conversely,
we found that the manual process of looking through each
dataset and identifying what it measured was useful, because
we were then able to answer questions on-the-fly at the
workshop without too much assistance from the scientists,

4At the workshop, one science participant proposed the query
SELECT paper FROM data!



thus limiting the disruption to their conversations. In practice,
a balance should be struck: the SQL experts need to know
enough about the data to work quickly and independently,
but the ability to ask scientists questions about the nature of
the datasets with short turnaround for answers could clear
up issues in seconds that would take hours to work out alone.

After completing Phase II, we did modify the Google Doc
collecting English science questions to request that scientists
adding questions also indicate which datasets they thought
contained relevant data. This change reduced the initial
grokking time for each question. We also proposed a new
feature for SQLShare: expanding the search facility to search
over column names as well as dataset names, tags, and de-
scriptions. This ability would also have reduced the time to
map queries to data in Phase II. This is only one of many new
SQLShare features to arise from this workshop; we describe
more in Section 7.

7. AT THE DATA SYNTHESIS WORKSHOP
At the workshop, more than 40 investigators and students
came together to review their data as a group, develop ques-
tions for further investigation, and draw some interesting
conclusions from the assembled data. Much of the discussion
revolved around what was different in different parts of the
ocean—either east and west across stations, or vertically
between different depths through the water column.

Our experiences at the meeting repeatedly underscored the
value of interactivity for these types of integrative, collabora-
tive summits. In this section, we summarize what happened
at the workshop, present illustrative anecdotes showing the
usefulness of our tools and approach and the transformative
nature of interactivity. We conclude with a list of lessons
learned.

7.1 Workshop schedule
The 2.5-day workshop began about 4 pm the first afternoon.
Armbrust, the Lead PI, began with a short welcome and
introduction to all the collaborators, then four scientists,
representing four types of data, gave short talks with aggre-
gate summary’s of individual participants’ initial findings
in that area. The goal of these talks was to share concisely
with the group the scope of data available to be analyzed at
the workshop. The lead author then gave a brief overview
of the SQL experts’ role and goals, and demonstrated the
SQLShare, ODV adaptor, and Sage adaptor tools. He used
the SQL from the example queries described in Section 6 to
illustrate the types of analysis that could be performed.

The rest of the workshop consisted of three half-day breakout
sessions in which four groups of scientists spread across two
rooms. One SQL expert would roam each room, observing the
discussion and looking for opportunities to help answer ques-
tions. On the morning of the second day, four groups doing
science with similar types of data—eukaryotic molecular or-
ganisms, prokaryotic molecular organisms, underway/metals,
and organics—met together to determine the key findings
of their data. In these groups, we were often asked to use
SQLShare to answer specific questions such as Queries 5–7
in Table 2.

During the afternoon session of the second day, the four
groups above were sliced horizontally and mixed and matched,
with the goal of comparing data across domains, including

taking the within-group findings of the morning and trying
to correlate them across groups. These queries were more
abstract and required combining more datasets (Query 8 in
Table 2).

On the third day, the scientists split into groups to discuss
logistics for the future of the GeoMICS collaboration. These
plans included: developing a schedule of how remaining sam-
ples should be split up and analyzed; specifying holes in
the collected data to be improved in the next cruise; and
choosing topics for a “project report” paper to be written this
summer. During this time, the SQL experts mainly worked
one-on-one with a few scientists continuing the analyses of
the previous day and also beginning work to analyze the key
findings of this project towards the group paper.

7.2 Observations of oceanographers
We made the following observations while helping integrate
and analyze data and during side discussions at the workshop.

Available technology. Oceanography is an empirical sci-
ence: almost all papers are based on the interpretation of
data. As computer staff are expensive, often even more costly
than a full-time researcher, many of the groups have either no
computer staff, or one person to help an entire department.
Many PIs had used IT staff, or volunteer undergraduate help,
to set up scripts, databases, or other processing pipelines in
the past, but those tools were abandoned when the staff left
or the students graduated. These anecdotes underscore the
value of our query-as-a-service approach.

Visualization. It is already impossible to grasp a dataset
of 1,000 rows, something nobody in the database community
would refer to as big data. Consequently, data visualization
is a key aspect of the way oceanographers get insight into the
data generated by their experiments. Many at the workshop
often used our Sage webapp to quickly visualize 2-variable
datasets, used ODV (via our web adaptor) to analyze multi-
variate relations, or downloaded an integrated dataset and
visualized it in R or MATLAB. For complex analyses, the
choice of technology was largely based on familiarity—though
the ODV adaptor greatly speeded-up context switching time—
but across users the Sage workbook saw a lot of activity
because of its low-overhead, fast-response-time interface.

Data Manipulation and Integration. A growing number
of marine biologists and geochemists are learning program-
ming and scripting languages as data processing becomes an
increasingly important part of their science. However, this
number is limited: only a few people used R or MATLAB
to actually manipulate the data or combine it with other
data sets (using for example R’s merge feature) on the fly.
We found this lack of tool use surprising because this task is
relevant not only in cross-researcher integration tasks like at
this workshop, but also to compare data with external data
sources, such as gene databases or satellite pictures. The data
format of these sources may be relational, but may also come
in the form of an image or XML. Without our help, the main
means by which researchers compared a dataset A with some
other dataset B was to display pre-generated visualizations of
A and B side-by-side rather than integrating the data so that
they could be compared quantitatively. For these reasons, it
appeared that without our help most cross-dataset questions
could not have been be answered at the meeting, even though
the necessary data was already available. We posit that this



technological “friction” could cause scientists to subtly choose
to favor questions that involve fewer technology-intensive
tasks, an effect that can accumulate over time into a shift in
research directions.

Hidden Semantics. One reason it is challenging to inte-
grate data from multiple sources is that the data’s semantics
are not sufficiently captured. Many details are only available
in a researcher’s mind. Data transformations, either per-
formed by hand or programmatically, are often not properly
documented such that the detailed provenance of a given
dataset is unrecoverable. When asked, many researchers
agreed that they would not be able to recreate a paper from
their raw data two years later. Without reproducibly, it is im-
possible to compare or combine results from publications to
ask new questions or to obtain higher statistical significance.

SQLShare helps resolve these issues by making it easy for
researchers to tag and add metadata to datasets, including
calibration parameters. In our own exploration of the data, we
used SQLShare to compute some aggregates such as“At what
stations and depths were the most water samples collected
using Niskin bottles?”, thereby gaining insight as to how much
data of what types was collected during the cruise. One would
normally have to develop a custom R or Python script to
access this information, but with the experimental metadata
stored in a database, this information is “only a query away”.
Additionally, SQLShare’s view-oriented strategy documents
data transformations so that they can be scrutinized after the
fact. Repeating a scientists’ analysis or recomputing it with
updated data requires only re-accessing the data returned
by the view; the results are re-computed on the fly.

7.3 The role of interactivity
The availability of our interactive tools changed the nature
of the meeting from “planning” to “doing.”

Interactive hypothesis generation and testing. For
one of the first queries, a PI and her student requested
a plot of total virus counts as a function of salinity. With the
scientists directing us to the relevant datasets, we computed
the join in SQLShare and generated a plot in Sage, which
showed a strong linear anti-correlation—viruses apparently
prefer less salty water. The scientist then called over another
PI and her student, who had generated profiles counting spe-
cific types of virus using a different methodology. We joined
the derived data with the new student’s data, and then we
visualized each individual species against the total virus,
without finding a significant relationship. Next, a dataset of
the total bacteria counts from a third lab was joined, and this
time the graph showed a strong positive correlation, with a
few off-diagonal points that had proportionally “extra” virus.
Without the interactive visualization tools, the in-person anal-
ysis would likely have stopped at posing the initial question,
and working out the relationships would probably have been
deferred until after the meeting and taken place over email,
possibly over days. In contrast, in a matter of five minutes
with our tools, three PIs and their students had integrated
data, discovered two interesting relationships between vari-
ables, tested and discarded three other relationships, and
identified at least one regime—the “extra” virus counts—for
further investigation.

Interactive quality control. Not uncommonly, we noticed
that a question could not be answered because data was not
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Figure 7: The runtime of the queries generated at
the data synthesis workshop. In this case study, we
used high-variety data, not high-volume data, and
in this regime queries are fast. Fully 80% of queries
completed within 100 ms, 95% of queries finished in
under 1 s, and all queries took less than 10 s to run.

collected during the trip or not yet uploaded to SQLShare. In
other cases, we detected a mistake in the query during the vi-
sualization process because certain values did not make sense.
One scientist who imported a multi-joined dataset into ODV
told us that the data could not be valid, as several stations
were missing. Looking at the query, we quickly realized that
an inner join had eliminated much of the data, and rewrote
the query as an outer join. In another case, swapped latitude
and longitude (Section 5) were found when ODV plotted the
cruise in the wrong part of the world.

Interactive interdisciplinary cross-validation. Between
breakout sessions, each group would assemble its findings and
then the leader would present them to the entire meeting. In
the morning session on the second day, the within-discipline
members of breakout compared and contrasted their find-
ings on “like” data, often integrating it in SQLShare and
visualizing the integration to present a unified (or differing)
perspective on the phenomena being studied, such as zinc
limitation (when not enough zinc is present to satisfy the
needs of certain organisms). In the afternoon session, mem-
bers of different disciplines worked together to integrate their
data and refine their findings using data of fundamentally dif-
ferent types, e.g., concentrations of about trace metals with
measurements of nutrients. The ability to quickly and easily
integrate disjoint data types together enabled joins of up to 8
different (cleaned) datasets, e.g., Query 8, and multi-variate
analysis to be conducted.

7.4 Results and lessons learned
Overall, we generated 39 derived datasets during the work-
shop, which were used actively during the workshop and
preserved for later analyses.

What went right:
• One concern was that the SQLShare system processing

would be a bottleneck for interactive analysis. Other suc-
cessful scientific database systems, such as the Sloan Digital
Sky Survey [11], use a carefully-engineered schema, indexes,
stored procedures, and distributed processing. In contrast,
SQLShare runs on a single Microsoft Windows Azure SQL
instance, ad hoc schema chosen by the system at runtime,
and there are no indexes. Would JOIN-intensive workloads
on SQLShare suffer as a result? Figure 7 shows the runtime
of 532 queries generated at the data synthesis workshop. A



Figure 8: This graph, part of a larger multi-variate
analysis, shows the relationship between zinc and
cobalt (Query 6). That zinc and cobalt are gener-
ally anti-correlated is interesting in its own right,
and the region at the lower left where zinc is low
indicates “Zinc stress”. The need to further explore
the relationship between zinc and cobalt was a key
finding of this meeting.

key lesson is that in the high-variety regime, queries are fast.
Fully 80% of queries completed within 100 ms, 95% of queries
finished in under 1 s, and all queries took less than 10 s.

• We found that the ability to integrate data from different
datasets and visualize them in real-time was indeed valu-
able. Almost every graph or result presented at the breakout
summary sessions was generated using SQLShare, and many
used one of our visualization aids as well. Query 6, the rela-
tionship between zinc and cobalt concentrations (Figure 8),
turned out to be a key finding of this workshop. A researcher
phrased the finding as follows: “We see a decrease of zinc
along an increasing concentration of cobalt. Except, there’s a
departure [in the lower left], and it is found in surface water,
so the question then becomes, is this a place where we start
looking at substitution of cobalt for zinc? Diatoms [which
live in surface water] prefer zinc to cobalt, but when they
are zinc stressed, they turn to cobalt.”

• We found that buy-in from the lead PI was critical. She
was able to convince the scientists to use the prepared tem-
plate keys and to generate questions ahead of time. In this
first experiment, these features were important to our success.

• The SQLShare REST interface was invaluable for con-
necting to the visualization tools and for authoring the script-
generated queries used to implement advanced features such
as extracting data from filenames, un-pivoting data in files,
and data cleaning. Without these abilities, our SQL “reaction
times” would have been much worse.

What went wrong:
• We were not able to answer every question that came

up during the workshop. This issue was not fundamental:
principally, it was due to a shortage of time—we could have
used at least twice as many data specialists. In other cases it
was because the data were not yet available (or so large that
the researchers had not completed uploading them when the
workshop started).

• There was occasional language mismatch. In the first

breakout session, many scientists asked for the correlation
between two variables. The lead author, busy answering
other queries, deferred this task until a break in order to
develop and debug a SQL idiom to compute the ρ2 coefficient.
It turned out the scientist just wanted a plot to visualize
the relationship—at least in this community, “correlation” is
commonly used to mean visualization.

• The standard deviation of question answering time was
high. Once practiced, we could answer many integration
queries in less than a minute. Yet, some of the queries took
longer because of data cleanup, slow UI response from SQL-
Share, or workarounds for software bugs. (For instance, many
common web clients place a 2000-character limit on URLs.
This limit is problematic when sending script-generated SQL
queries over 100s of columns.)

• Neither we nor the scientists were prepared for the prob-
lems of integrating -omics data. In particular, the main output
of annotated sequence data is human-generated functional
annotations. Different types of -omics are aligned against dif-
ferent databases that use different annotation techniques. As
a result, asking whether the transcriptomic data contained
a gene encoding a particular protein was an un-answerable
question—the annotations were unlikely to line up, and there
was no common “key” that disparate data were joined with.
At the workshop, one participant described an alternative
alignment method based on a clustered database5 that does
have a unified keyspace against which different types of -omics
can be joined, and hence compared. The -omics participants
at the workshop plan to adopt this approach going forward.

Future opportunities:
• Although the REST API allowed two different visual-

ization services to be developed and deployed in a single
day, they were important enough to the process to motivate
building visualization capabilities natively in SQLShare, as
well as providing an interface to tools such as Tableau.

• In this experiment, we did not attempt to have scientists
write SQL queries themselves, but the ability to “self-serve”
is clearly desirable. A system that allows a complete novice
to walk up and write queries of a comparable complexity
to the ones we have described with no training represents
an ambitious research goal for a collaboration between the
database, HCI, and eScience communities.

• Our success was assisted by the use of top-down standards
to homogenize the data, and some up-front cleaning in the
days leading up to the event. In some situations, even these
minor luxuries are not available. A system that can achieve
similar results with zero assumptions about the data is an
important goal.

• The UI performance was more important than we antici-
pated. Even minor delays can adversely affect the experience
for the user and the experts.

• We did not have a control in this experiment; we are
not able to conclude that SQL is any more effective than
any other approach for this purpose. However, we hypoth-
esize that general purpose languages, workflow tools, and
GUI applications would struggle in this context by requiring
significant development time or by severely constraining ex-
pressiveness, or both. In future work, it would be useful to
conduct a controlled experiment to test this hypothesis.

5http://www.ncbi.nlm.nih.gov/proteinclusters

http://www.ncbi.nlm.nih.gov/proteinclusters


8. RELATED WORK
Google Fusion Tables allows direct upload of data, limited
GUI-based queries, a REST API, and rich visualization ca-
pabilities. Fusion Tables shares a similar motivation with
SQLShare, but cannot express even the routine tasks we
encounter working with scientists (multi-key joins, set opera-
tors, common user-defined functions) [3].

The Sloan Digital Sky Survey [11] exposed a multi-terabyte
astronomy database over the web through public SQL in-
terfaces, and demonstrated that researchers can and will
write SQL queries. The effect the SDSS project had on the
field is difficult to overstate; a generation of astronomers
now learn SQL in their training, and thousands of papers
have been written based on accessing data through SQL.
Unlike SDSS, we are exploring scenarios where relying on
an pre-engineered schema is not feasible, typically because
the cost of developing it cannot be amortized over enough
time and use, or because the data are too diverse. SQLShare
represents an approach to achieve similar results as SDSS for
smaller-scale projects that do not have access to significant
database programming expertise.

Other public databases such as the Gene Ontology database [2]
and NCBI [7] support SQL access either through client tools
or specialize web applications. They do not allow users to
upload their own datasets.

Galaxy is a popular web-based workflow engine popular
in the life sciences that allows users to create and share
data processing pipelines. Relational algebra operators are
included in the set of algorithms available, implying that
users are interested in basic database queries. Galaxy offers
no declarative query language and no support for algebraic
optimization, making it infeasible for use in the real-time,
interactive scenario we describe in this paper. Other workflow
systems including VisTrails, Taverna, and Kepler are also
not designed for real-time pipeline authoring, and could
not automatically accommodate the unusual file formats
we encounter in practice. SQLShare’s view-oriented design
enhances interactivity relative to pipeline systems: To change
an early step in a Galaxy pipeline, a user must manually re-
execute all successive steps; in contrast, SQLShare datasets
automatically return updated results whenever the views
are queried. Perhaps most importantly, we found that these
tasks simply did not require the customized data processing
pipelines emphasized by these systems: SQL was more than
sufficient.

OData [8] is a standardized API for accessing and querying
data over the web. The OData API supports only basic
filtering on individual tables and cannot be used to express
joins or other non-trivial queries.

9. CONCLUSIONS
Our hypothesis was that declarative query languages could
be used to facilitate interactive, collaborative science even
without the benefit of an engineered schema. We tested this
hypothesis anecdotally by ingesting heterogeneous science
data into a web-based query-as-a-service system called SQL-
Share and participating in a research meeting with geochem-
ical oceanographers and microbial ecologists, attempting to
write queries in real-time in response to the discussion. This
experiment was a success: we received highly favorable feed-
back from the researchers, and authored 39 reusable views

representing researchers’ hypotheses. The technology and
approach fundamentally changed the meeting by allowing
scientific Q&A while the collaborators were all present to
discuss the findings, as opposed to working independently
when they returned to their labs.

Acknowledgments
We would like to acknowledge all the participants of the
GeoMICS workshop for their help and sharing the data for
this paper. We would particularly like to thank James Moffett
and Jagruti Vedamati for the use of their unpublished data.
We would also like to thank David Meier for his helpful
comments, as well as the anonymous referees. This work was
sponsored in part by NSF Award #1154074, NSF Award
#1205233, the Gordon and Betty Moore Foundation, and
the Intel Science and Technology Center on Big Data.

10. REFERENCES
[1] EAGER: The relationship between microbial

biogeography and ocean chemistry across a persistent
oceanographic “hot spot” in the NE Pacific Ocean.
http://www.nsf.gov/awardsearch/showAward?AWD_

ID=1205233.

[2] The Gene Ontology Database.
http://www.geneontology.org/.

[3] H. Gonzalez, A. Y. Halevy, C. S. Jensen, A. Langen,
J. Madhavan, R. Shapley, W. Shen, and
J. Goldberg-Kidon. Google Fusion Tables:
web-centered data management and collaboration. In
Proc. of the SIGMOD Conf., pages 1061–1066, 2010.

[4] J. Gray and A. S. Szalay. Where the rubber meets the
sky: Bridging the gap between databases and science.
CoRR, abs/cs/0502011, 2005.

[5] B. Howe, G. Cole, E. Souroush, P. Koutris, A. Key,
N. Khoussainova, and L. Battle. Database-as-a-service
for long tail science. In SSDBM ’11: Proceedings of the
23rd Scientific and Statistical Database Management
Conference, 2011.

[6] B. Howe, F. Ribalet, D. Halperin, S. Chitnis, and E. V.
Armbrust. SQLShare: Scientific workflow via relational
view sharing. Computing in Science & Engineering,
Special Issue on Science Data Management, 15(2),
May/June 2013.

[7] National Center for Biotechnology Information.
http://www.ncbi.nlm.nih.gov/.

[8] Open Data Protocol. http://www.odata.org/.

[9] F. Ribalet, A. Marchetti, K. A. Hubbard, K. Brown,
C. A. Durkin, R. Morales, M. Robert, J. E. Swalwell,
P. D. Tortell, and E. V. Armbrust. Unveiling a
phytoplankton hotspot at a narrow boundary between
coastal and offshore waters. PNAS,
107(38):16571–16576, 2010.

[10] J. Rogers, R. Simakov, E. Soroush, P. Velikhov,
M. Balazinska, D. DeWitt, B. Heath, D. Maier,
S. Madden, J. Patel, M. Stonebraker, S. Zdonik,
A. Smirnov, K. Knizhnik, and P. G. Brown. Overview
of SciDB: Large scale array storage, processing and
analysis. In Proc. of the SIGMOD Conf., 2010.

[11] Sloan Digital Sky Survey. http://cas.sdss.org.

[12] J. E. Swalwell, F. Ribalet, and E. V. Armbrust.
SeaFlow: A novel underway flow-cytometer for
continuous observations of phytoplankton in the ocean.
Limnology & Oceanography Methods, 9:466–477, 2011.

http://www.nsf.gov/awardsearch/showAward?AWD_ID=1205233
http://www.nsf.gov/awardsearch/showAward?AWD_ID=1205233
http://www.geneontology.org/
http://www.ncbi.nlm.nih.gov/
http://www.odata.org/
http://cas.sdss.org

	Introduction
	GeoMICS Science
	Methodology
	SQLShare Technology
	SQL generators for common patterns
	Ocean Data View adaptor
	Sage notebook adaptor

	The Data
	Measurements
	Ingested Data
	Dataset idiosyncrasies

	Preparing for the workshop
	At the data synthesis workshop
	Workshop schedule
	Observations of oceanographers
	The role of interactivity
	Results and lessons learned

	Related Work
	Conclusions
	References

