60 GHz Flyways: Adding multi-Gbps wireless links to data centers

Daniel Halperin

Srikanth Kandula, Jitu Padhye Victor Bahl, David Wetherall

Microsoft[®] **Research**

Today's data center networks are oversubscribed in the core

Perform well in average case with job placement

Bottlenecks in core can be workload "hotspots"

Eliminating oversubscription is expensive

No core hotspots No job placement

Costly switches Complex wiring

Our goal: Flyways

To enable a network with an **oversubscribed core** to act like a **non-oversubscribed network** by **dynamically injecting** high-bandwidth links.

System overview

Outline of the rest of this talk

- 60 GHz wireless technology
- Wireless *flyways system design*
- Evaluation on real data center workloads

60 GHz WIRELESS

60 GHz primer

- 7 GHz of unlicensed spectrum @60 GHz
- Forthcoming IEEE 802.11ad: 3 channels, bitrates to 6.76 Gbp4 GHz
- Challenge:

50 GHz link has **55 dB (312,000x) worse SNR** han 2.4 GHz link

60 GHz

Directionality is crucial

60 GHz directional technology

Phased Array

Physical Antenna

Compact (1 in²) Electronic steering (μs)

Fixed position

60 GHz for Flyways

60 GHz links

- Multi-Gbps
- Directional
- Steerable

Flyways must be

- Reliable
- Densely
 deployed

Directional 60 GHz links are not robust to blockage

Beam Interrupted

A 60 GHz link in a data center

Directional 60 GHz links are stable in a data center

Measurement-based 802.11ad simulator

- Simulator to *evaluate many concurrent flyways*
 - Channel model from indoor/DC RF measurements
 - Measured 60 GHz antenna patterns
 - Also compared to 8-element 2.4 GHz "Phocus" array
- Implementation in ns-3
 - 802.11ad physical layer and protocol
 - TCP and UDP packet simulations
 - Dozens of concurrent multi-Gigabit links

Flyways can be densely deployed

- 160 racks, based on real DC topology
- Draw random links until no more can be added
- Ensure all links meet rate threshold
- 12-30 links per channel, depending on rate

Measurement summary

- 60 GHz offers *multi-Gbps, directional,* steerable wireless links with IEEE 802.11ad
- Measurements and simulations show
 - Links are *reliable in data centers*
 - With directionality, links can be *densely deployed*
- Many additional measurements in paper

WIRELESS FLYWAYS SYSTEM DESIGN WISCOMM201

System overview

Flyway controller architecture

H Iteratively choose S that will best flyway

Coordinating devices

Leverage the **wired backbone** to **sidestep issues of coordination**

Orienting antennas

Traditional algorithms *search,* e.g. **sector sweep**

Data center topology is **known** and **stable**

Predicting bitrate

Directionality alleviates multi-path: SNR lookup table [DIRC, SIGCOMM'09]

Use SINR for interference

High-efficiency MAC

Offload small reverse TCP packets to wired network: +25% wireless goodput

Flyway controller architecture

Wireless links & Rates How to *setup links, predict bitrates,* and *manage interference*

How to *select flyways* that will *improve performance*

Selecting flyways: Simple example

@SIGCOMM2011

Base 10 Gbps network:

15 seconds

"Straggler": Flyway at largest hotspot

Base 10 Gbps network:

• 15 seconds

Straggler:

12.2 seconds

"Transit": Forward traffic on flyway

Base 10 Gbps network:

• 15 seconds

Straggler:

12.2 seconds

Transit:

• 11.7 seconds

"Greedy": Choose faster flyways

Base 10 Gbps network:

• 15 seconds

Straggler:

12.2 seconds

Transit:

• 11.7 seconds

Greedy:

• 9.4 seconds

EVALUATION

Evaluation using real DC workloads

We studied *four live data centers*
 Mix of applications (Cosmos, IndexSrv, 2xHPC)
 Pre-production and production servers

• 76 hours of traces, 114 TB of traffic

- Measured application demand

Hypothetical demand matrix needs full-bisection

Source Rack

Real traces have localized hotspots

Source Rack

Evaluation setup

- Evaluated 60 GHz flyways improvements on *real demand matrices* in an ns-3 *topology based on real DC layout*
- Metric: Completion time of Demands (CTD)
 - Relative to non-oversubscribed network
 - CTD of 1 same as non-oversubscribed
 - CTD of 2 same as 1:2 oversubscribed

Incremental benefit of strategies

1-3 devices / node

Conclusions

- 60 GHz flyways can substantially *improve* performance in oversubscribed DC
- Traffic indirection crucial for practical benefit in real workloads
- Novel techniques *leverage wired backbone* to dramatically simplify and speed hybrid system

Read more: http://r.halper.in/paper/flyways_sigcomm11