Real-Time Collaborative Analysis with (Almost) Pure SQL: A Case Study in Biogeochemical Oceanography

Daniel Halperin
University of Washington
dhalperi@cs.uw.edu

Konstantin Weitz
University of Washington
weitzkon@cs.uw.edu

Bill Howe
University of Washington
billhowe@cs.uw.edu

Francois Ribalet
University of Washington
ribalet@uw.edu

Mak A. Saito
Woods Hole Oceanographic Institute
msaito@whoi.edu

ABSTRACT
We consider a case study using SQL-as-a-Service to support “instant analysis” of weakly structured relational data at a multi-investigator science retreat. Here, “weakly structured” means tabular, rows-and-columns datasets that share some common context, but that have limited a priori agreement on file formats, relationships, types, schemas, metadata, or semantics. In this case study, the data were acquired from hundreds of distinct locations during a multi-day oceanographic cruise using a variety of physical, biological, and chemical sensors and assays. Months after the cruise when preliminary data processing was complete, 40+ researchers from a variety of disciplines participated in a two-day “data synthesis workshop.” At this workshop, two computer scientists used a web-based query-as-a-service platform called SQLShare to perform “SQL stenography”: capturing the scientific discussion in real time to integrate data, test hypotheses, and populate visualizations to then inform and enhance further discussion. In this “field test” of our technology and approach, we found that it was not only feasible to support interactive science Q&A with essentially pure SQL, but that we significantly increased the value of the “face time” at the meeting: researchers from different fields were able to validate assumptions and resolve ambiguity about each others’ fields. As a result, new science emerged from a meeting that was originally just a planning meeting. In this paper, we describe the details of this experiment, discuss our major findings, and lay out a new research agenda for collaborative science database services.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Scientific Databases

General Terms
Design, Experimentation, Human Factors, Management

1. INTRODUCTION
Data analysis is replacing data acquisition as the bottleneck to scientific discovery. The challenges associated with high-volume data have received significant attention [10], but the challenges related to integrating weakly structured, high-variety data—hundreds of datasets with hundreds of columns and no a priori agreement on format or semantics—are understudied. Even at small scales, our collaborators report that these situations require them to spend up to 90% of their time on data handling tasks that have little to do with the science [5].

We posit that the use of declarative query languages can significantly reduce the overhead of working with weakly structured relational data, allowing real-time, discussion-oriented scientific Q&A as opposed to relying on offline programming. To test this hypothesis, we have designed and deployed a web-based query-as-a-service system called SQLShare [5] that emphasizes a simple Upload/Query/Share workflow over heavyweight database engineering and administration tasks. Data can be uploaded to SQLShare “as is” and queried directly; a basic schema is inferred from the column headers and data types. Queries can be saved as views and shared with colleagues by exchanging URLs. In prior work, we found that this approach can capture most relevant tasks and improve productivity for distributed, asynchronous collaboration [6].

In this paper, we consider whether our query-as-a-service approach can also be used to improve productivity in real-time, synchronous, face-to-face collaboration, even without assuming that the data has been integrated into some pre-engineered schema. The challenges are significant: data must be cleaned and integrated, and science questions must be disambiguated and encoded in SQL, all on-the-fly. When successful, this level of interactivity for scientific Q&A is not just faster, it is a different experience. The availability of instant results to questions arising from organic discussion changes the nature of the meeting: instead of assigning action items for investigators to complete offline when the “trail is cold”, the researchers can test hypotheses and explore the implications online, during the meeting, while the ideas are fresh and everyone’s perspective can be incorporated—“data-driven discussion.”

We test this approach in the context of the GeoMICS project [1], a multi-institution, multi-disciplinary oceanographic collaboration between geochemists and molecular ecologists spearheaded by co-author Armbrust. The team acquired data during a research cruise in May 2012 in the northeast Pacific Ocean. The overall purpose of the cruise was two-fold. The scientific goal of the cruise was to study a well-defined transition zone between coastal and open-ocean waters [9]. To

https://sqlshare.escience.washington.edu/
do this, the PIs employed a battery of acoustic and optical sensors and sample-based measurement techniques to collect hundreds of independent physical, biological, and chemical variables at hundreds of discrete locations within and on either side of the transition zone. The second goal of the cruise was collaborative: to bring together “two largely independently operating research communities—geochemists and molecular ecologists” [1], for the first time, in order to study the same types of biogeochemical features in the ocean through the lens of very different types of data and analyses. In conversation, the scientists from different disciplines explicitly stated that they intended to “prove that we can work together” so that funding agencies would support these types of collaborations on program scale [1].

The second stage of the project was a data synthesis workshop hosted in February 2013, only nine months after the initial cruise. One of the requirements of participation in the GeoMICS project was that all participants agree to complete sample processing in a timely manner and share the data broadly within the group; this workshop was the first test of this mandate. Before the meeting, the team prepared preliminary datasets (primarily spreadsheets and delimited ASCII files) and centralized them via Dropbox. These data were uploaded as-is into SQLShare [5] by the computer science team; each file (or sheet) became a distinct table with attribute types assigned automatically by SQLShare. At this stage, no attempt was made to integrate the data or prepare some unified schema.

Also prior to the meeting, the participants were asked to submit English questions representing their science interests, an adaptation of the “20 questions” requirements-gathering methodology proposed by Jim Gray [4]. These preliminary questions helped resolve ambiguities and expose relationships in the raw data, and they served to engage with the science team and generate enthusiasm in the lead up to the meeting.

During the meeting, the group of more than 40 investigators and students came together to compare, contrast, and combine their data and insights, both within each discipline and, more importantly, across disciplines. To conduct the “field test” of our query-as-a-service technology and our schema-free approach, two computer science co-authors also attended to act as “SQL stenographers”: We translated questions into SQL in real-time in response to the discussion, while working with the scientists one-on-one and in groups as appropriate to clarify the science and resolve ambiguity. Some quantitative questions were answered directly in SQLShare (“What were the top five proteins expressed at each station?”). For less precise questions (“What is the relationship between temperature and salinity?”), we generated visualizations using domain-specific tools that we linked to SQLShare programmatically in the days leading up to the event.

In this paper, we describe the science, the data, the queries, and our findings from this experiment, concluding that on-the-fly integration and analysis is feasible with essentially pure SQL, despite the lack of an engineered schema, the challenges of interdisciplinary communication, and the bleeding-edge science. In particular, we found the web-based query-as-a-service system to be critical: Given the SQLShare UI, we were able to refactor common queries into reusable views, organize the views using simple tagging schemes, and keep track of recent results during discussions. Given the SQLShare REST interfaces, we were able to avoid writing any new code to parse unusual file formats, and we were able to export data automatically to client applications preferred by the researchers. Overall, the combination of the technology and the “social protocol” used to collect data and queries by the lead PI were instrumental in the success of the experiment.

2. GEOMICS SCIENCE

In this section, we describe the scientific motivation behind the GeoMICS project.

Over the last three decades, extensive oceanographic surveys have been conducted to improve the understanding of large-scale circulation and biogeochemical cycles in the marine environment. The World Ocean Circulation Experiment, the Joint Global Ocean Flux and GEOTRACES programs, along with many other studies, demonstrate that microbial communities drive the biogeochemical cycling of the major elements (e.g., carbon, nitrogen, phosphorus, sulfur) on our planet. The results of these studies indicate that marine microbes generate and recycle about half of the organic carbon produced on Earth and carry out all nitrogen fixation, ammonia oxidation, denitrification, sulfur reduction/oxidation, and mediate the distribution and speciation of bioactive metals within the oceans. Furthermore, there is now evidence for the existence of biogeochemical oceanic provinces where large-scale chemical and physical features dictate microbial activity and the resulting elemental cycling. Recent data indicate that the oceans are undergoing rapid changes: ocean waters are warming, wind patterns are shifting, and ocean circulation is changing, together shifting turbulent mixing and delivery of nutrients from deep to surface waters. Such dramatic changes underlie an urgent need to identify the processes and quantify fluxes that control the biogeochemical cycles in the ocean. Understanding the factors that dictate province boundaries will allow predictions of how these regions may expand or contract under future ocean conditions.

To explore these questions, two largely independent operating research communities—geochemists and molecular ecologists—conducted a cruise to the northeast Pacific Ocean to sample the province boundary between offshore High-Nitrate, Low-Chlorophyll and coastal waters. The aim was to examine the interactions between changes in microbial diversity, community functions, and chemical features. The transition zone between these two oceanographic provinces is characterized by a strong gradient in biogeochemical properties and high biological activity. The oceanographers collected an unprecedented suite of biological samples (metagenomes, metatranscriptomes, metaproteomes and metabolomics of viruses, bacteria and phytoplankton) and chemical measurements (nutrients and dissolved and suspended particulate iron, copper, zinc, manganese, cobalt, nickel and cadmium) from surface to seafloor. Together, these samples will help elucidate the interactions between changes in microbial diversity, community functions, and chemical features at relevant spatial resolution.

The data collected from this cruise, and the collaborative process by which the data will be analyzed, poses a challenge for conventional database technology. These highly interdisciplinary, highly collaborative projects are characterized by extremely heterogeneous data sources, diverse user backgrounds and skill sets, and a need for real-time collaborative
Figure 1: An example visualization product from the workshop. The map at left shows the locations of the seven measurement stations visited during the cruise, labeled P1 through P8 (excluding P7) from east to west. The plot at right shows the ratio of iron (Fe) concentration to nitrate (NO$_3$) concentrations throughout cruise area to a depth of 300 m. To generate this figure, we used SQLShare to join three disparate datasets—metal concentrations; nutrient concentrations; and an external bathymetry dataset—and then compute the Fe/NO$_3$ ratio using NULL-and-0-aware division. We then used our Ocean Data View adaptor webapp to download the derived dataset, imported it into ODV, and generated this visualization. In the plot at right, each black dot shows locations where the ratio was defined, and the colors are automatically interpolated by ODV.

This paper represents an initial case study testing a query-as-a-service platform.

3. METHODOLOGY

In preparation for and during the data synthesis workshop planned by the researchers, the team applied the following methodology.

A minimal standardized data template was prepared and mailed to all GeoMICS participants. Each row of the template includes six attributes (Event, Latitude, Longitude, Station, Depth, Source) that together represent a specific sampling event, the location, the depth below the surface in meters, and the instrument used. These semantics were not enforced or validated; as a result, many datasets required some transformation before they could be integrated.

After the distributing the template, the Lead PI sent an email asking all GeoMICS participants to upload their data to Dropbox. Just before the workshop, roughly 80% of participants had responded and provided their data. Once the data appeared in Dropbox or were sent by email, we uploaded the data sets to SQLShare, which parsed the basic structure of the data and inferred column types. While most data was ingested into SQLShare automatically, some datasets exposed bugs in SQLShare’s parsing capabilities: illegal column names containing bracket characters needed to be replaced offline, for example.

Once the data was uploaded, additional formatting and cleaning steps were performed in SQL directly. For example, numeric values were suffixed with their units, making SQLShare interpret the value as a string. Interestingly, once the researchers saw their data in SQLShare and recognized the ability to combine data from different sources, we were swamped with emails asking for help “attaching” data. These questions exposed some misunderstandings—some researchers believed that re-uploading data was the only way to combine two datasets. The ability to write queries to accomplish the same task was not immediately obvious.

The PI also solicited representative questions capturing science goals; this process was modeled after Jim Gray’s “20 questions” approach [4]. We described how they were evaluated in Section 6.

To facilitate analysis using tools familiar to the researchers, we also built client applications against SQLShare’s REST API (which took approximately one day—a very low level of effort.) These tools are described in more detail in Section 4.

The meeting was organized as a plenary session on the first day, then two breakout sessions on the second day (one by discipline, and another intentionally interdisciplinary). On the first day of the workshop, we gave an introductory presentation to the group on SQLShare, but offered no additional training in either SQLShare or SQL. We relied entirely on hands-on support during the breakout sessions (Figure 2). The results of these sessions and a discussion of lessons learned are provided in Section 7.

4. SQLSHARE TECHNOLOGY

At the University of Washington eScience Institute, along with collaborators at Portland State University and the University of Michigan, we are developing a new “deliv-
A second script provides a global find and replace facility. An advantage of using SQL for science is that the underlying relational database technology called SQLShare, and studying how it can be used to satisfy both scientific workflow requirements and ad hoc interactive analysis. SQLShare is a web-based query-as-a-service system that eliminates the initial setup costs associated with conventional database projects and instead emphasizes a simple Upload/Query/Share protocol: users upload their table-structured files through a browser (or programmatically via an API) and can immediately query them using SQL—no schema design, no preprocessing, no database administrators. SQLShare users derive new datasets by writing and saving SQL queries. Each derived dataset is managed as a view in the underlying database: a named, permanently stored query. Each dataset is also equipped with descriptive metadata. Everything in SQLShare is accomplished by writing and sharing views: Users can clean data, assess quality, standardize units, integrate data from multiple sources, attach metadata, protect sensitive data, and publish results.

SQLShare has three components, all of which are cloud-hosted: a web-based UI, a REST web service, and a database backend. The UI is a Django Python application (a web framework similar to Ruby on Rails), and hosted on Amazon Web Services. The UI communicates with the backend exclusively through REST calls, ensuring that all client tools have full access to all features. The web service is implemented on Microsoft Azure as (one or more) Web Roles. The database is implemented using Microsoft’s SQL Azure system, which is very similar to Microsoft’s SQL Server platform.

Version 1 of SQLShare was completed in 2010 and has been in use by scientists at UW and elsewhere since that time. To complement and extend its functionality for this experiment, we also produced several custom tools in the days leading up to the workshop that interact with SQLShare via the REST API. These tools were designed to add domain-specific interfaces for oceanography to SQLShare; to provide online, ad hoc, scriptable visualizations; and for assistance in writing SQL statements to execute data cleaning and integration tasks. Some of these tools served as early prototypes for features that might later become core SQLShare functionality.

4.1 SQL generators for common patterns

An advantage of using SQL for science is that the underlying relational algebra is sufficient to express basic cleaning, integration, and analysis operations without having to write code in any external language. However, some tasks are tedious and error-prone to implement in SQL, typically because they involve working with long lists of explicit column references. In these cases, we developed scripts to generate SQL templates for specific idioms.

One script creates a view that contains all columns from a source table with a single column renamed. There is no mechanism in standard SQL to declaratively refer to a set of columns; the asterisk is expanded to “all columns”, but there is no corresponding syntax meaning “all columns except this one,” for example. As a result, each and every column must be explicitly mentioned in the `SELECT` clause even if we only want to rename one. But given simple syntactic sugar to expand `SELECT * FROM TABLE` into `SELECT time, location, temp FROM TABLE`, a user can easily modify the resulting template to rename `temp` to, say, `temp AS surface_temperature`.

A second script provides a global find and replace facility. NULL values are frequently represented by some domain- or researcher-specific sentinel value in the data: oceanographers often use -99 to indicate an invalid or missing measurement, for example. Replacing NULL values in a single column involves a simple `CASE` expression (or vendor-specific function), but replacing values in every column involves repetitive copying and pasting. This manual step was eliminated by automatically generating the appropriate queries to replace values in every column in which they appear.

4.2 Ocean Data View adaptor

Oceanographers commonly visualize data in a domain-specific tool called Ocean Data View (ODV).2 ODV accepts plain rows-and-columns CSV or text files as input; however the process of importing an arbitrary file is time-consuming and manually intensive because the user must associate each column with a known data type. Any errors made during this import process typically cause users to abandon their progress and start over from the beginning; we noticed at least two of these aborted queries during the workshop when users attempted to import raw datasets.

This manual process can be avoided if the input file has a shape that ODV recognizes. In particular, ODV imposes restrictions on the order and name of relevant columns: the name of the cruise, the station of the measurement, latitude, longitude, and depth must be located at the beginning of the table, and ODV will not detect that a field called ‘Latitude..Decimal.deg.’ is a sanitized form of ‘Latitude (Decimal deg)’ produced by R, and the automatic import will fail. Using the SQLShare REST interface, however, we can automatically inspect the columns of a dataset, determine whether it is compatible with ODV, and then programmatically generate the SQL statement to permute and rename columns so that the resulting dataset can be automatically imported into ODV. We packaged this logic into a Python web application, which we then deployed on a free Google App Engine instance. This tool enabled anyone at the workshop to visit the application, enter the name of an original or derived dataset, and download a transformed version of that dataset ready for automatic import into ODV. This tool enabled users, some of whom may have never logged into SQLShare nor seen SQL code, to easily import, visualize, and analyze data without any input or assistance from the computer scientists at the workshop.

SQLShare’s REST interface made our tool development particularly easy: an author who had never used REST before was able to develop both of these tools from concept to production in about twelve hours.

4.3 Sage notebook adaptor

We extended SQLShare with support for basic visualizations using Sage. Sage is an open source bundle of mathematics libraries and programs, intended to provide many features of well known programs such as R, Mathematica and MATLAB. We set up a Sage Notebook Server on an Amazon Web Services instance and provided a function `get_table` that uses SQLShare’s REST API to download a table and make it directly accessible in the notebook. The entire design, development, and deployment process was completed in less than an hour.

2http://odv.awi.de/
5. THE DATA

In this section, we describe the measurements made during the cruise and then discuss the characteristics of the processed datasets that were available for the data synthesis workshop.

5.1 Measurements

Three categories of measurements were collected:

Underway data were collected by analyzing uncontaminated seawater flowing continuously through a sensing apparatus mounted underneath the vessel at a fixed depth of five meters below the surface. This platform was equipped with a thermosalinograph (measuring salinity and temperature, as well as conductivity) and a SeaFlow flow cytometer \[12\] that uses a laser to count and classify the organisms in the water. Other data include latitude and longitude from the ship’s navigation system, and atmospheric factors such as air temperature, humidity, and barometric pressure.

Sample data is data that comes from analysis of water samples gathered when the ship was anchored on station. The water was collected using one of three techniques:

- In a cast, a rosette of up to twenty-four empty 10 L bottles (Figure 4) were lowered to a specific depth, while attached instruments continuously sampled data such as temperature, salinity, fluorescence, and nitrate concentration. Based on this depth profile, where measurements were taken at other stations, and the intended use of the water samples, the scientists then chose the depths and quantities of samples to collect in order to capture the features of interest. The rosette was then raised to the surface, while each bottle shut at its chosen depth to capture a snapshot of the water at that specific time and location.

- A surface pump continuously pumped water from 5 m below the surface up to the deck of the ship. Some of the water samples were filtered through various size filters to collect particles and organisms of particular sizes, and in other cases, particle-free seawater was gathered.

- A special McLane pump was configured with filters of chosen sizes, lowered to a specified depth, and then filtered water continuously until either the exiting water pressure dropped (i.e., the filter clogged because it had collected enough samples) or a fixed time period expired. The McLane pump emulates the surface pump operation, but at depth.

While a few samples were processed in a lab space of the ship, most samples—typically the filtered organic samples for genomics, proteomics, or transcriptomics (collectively referred to as “-omics”)—were frozen, catalogued, and analyzed in the individual scientists’ lab facilities. In addition to the features described above, concentrations of trace metals (copper, iron, zinc, cadmium, manganese, nickel and cobalt) and inorganic nutrients (nitrate, nitrite, ammonium, phosphate, silicic acid, dissolved inorganic carbon, and biogenic silica) were measured. For all sample types, multiple samples were often collected at each station for the purposes of scaling up the number of samples or repeatability of the measurements. Finally, cast data were collected from the instruments attached to the rosettes lowered during casts. These data give a view through the water column of physical and biological properties. Like the sample data, these data are collected at similar times and the same location, but they capture the entire water column rather than a few discrete depths.

5.2 Ingested Data

In total, 49 original datasets were available and uploaded to SQLShare for use at the data synthesis workshop. These data represent preliminary offline processing of most of the physical and chemical variables. In contrast, only a few of the biological datasets were prepared in time for the workshop in part due to the labor- and CPU-resource-intensive processing steps to process the samples. Additionally, the biological data were difficult to integrate in their existing form due to incomplete information; we discuss this issue in more detail in Section 5. Finally, there was some resistance to sharing data before it was fully quality controlled.

Organization. The GeoMICS data synthesis workshop was distinctive in the sense that the cruise had been planned with collaboration in mind.\[3\] To this end, every researcher was instructed to associate each measurement with a shared key. In particular, the following combination of four factors can

\[3\]This project was unusual: While nearly all cruises host the experiments of many independent researchers, these different measurements are typically never integrated!
Figure 5: The number of rows and columns in the 49 original datasets. Dataset size covers seven orders of magnitude from 1 to 10 million rows. The number of columns ranges from 2 to 69: most datasets measure few variables, but several measure 30 or more.

uniquely identify each sample: which Station the ship was at, which Instrument collected the data, from what Depth the sample was taken, and during which Event—a cast, a position of the surface pump, a lowering of the McLane pump, etc.—the sample was gathered. The science team promoted the concept of a unique label formed by concatenating the four attributes participating as a key, but we typically ignored this surrogate key (which violates first normal form) and referred to the composite key directly in our queries. In addition to the five columns described, the template also included a Latitude and Longitude column containing the locations of the Stations. Though redundant, these columns were intended to aid scientists in linking their data with the template and as a sanity check in case the human-generated Station label on a dataset was incorrect.

To collect data for the workshop, an Excel spreadsheet containing all valid four-column-keys was distributed to the researchers, who appended the columns containing their data and then uploaded the datasets to a shared repository setup by the Lead PI. Some datasets used only a subset of the key: the -omics data were collected only at the surface using the surface pumps and hence included only the Station number, and the underway data used Latitude and Longitude as keys because they were collected at all locations, not just on Station.

Example. Table 1 shows a partial subset of a trace metal dataset uploaded to SQLShare. The left four columns give the composite key identifying the cast, station, depth and instrument at which the water analyzed to obtain these values was sampled. The right four columns show the concentrations of iron (Fe) and copper (Cu), as well as error bars given by their standard deviations. This snapshot is only part of the entire table; the original dataset has 15 columns, which included some redundant key information (Latitude, Longitude, and Label) and the concentrations of zinc and manganese, and 74 rows which included additional depths and stations. During science discussions at the workshop, this dataset was joined with other datasets to generate the visualizations of both Figure 1 and Figure 8.

Characteristics. Figure 5 shows the distribution of the number of columns and rows in the 49 datasets collected. The number of rows indicate how many measurements each dataset contains, ranging from 1 row to 10 million rows—a span of seven orders of magnitude. The input data contain both measurements collected during the cruise and external datasets loaded to facilitate analysis. The larger datasets typically came from either continuously-sampled underway data or the biological protein or gene sequence information extracted from stored samples, while the smaller datasets were associated with measurements taken infrequently throughout the cruise, such as instrument calibration. Similarly, some external databases that we imported are very small; the bathymetry dataset providing the depth of each station was only a few rows. The largest dataset was a BLAST function map, which maps database-specific gene IDs to human-generated descriptions of their biological functions.

The number of columns indicates the number of variables measured in each dataset. Many of these datasets only measure a few quantities: over 75% of the input datasets have 20 or fewer columns, but several datasets cover dozens of variables and have up to 69 columns. Datasets with fewer columns are typically external datasets that do not fit the template. For instance, the bathymetry dataset above has only two columns: the Station and the corresponding Depth of the ocean floor.

5.3 Dataset idiosyncrasies

We uncovered a number of idiosyncrasies in the source data provided by the scientists. Here are a few examples:

Template misuse: In some datasets, the Latitude and Longitude columns were switched. We suspect this transposition arose when the creator copied and pasted columns and column headers from the template into a pre-existing spreadsheet, rather than copying the data into the template. In another dataset, the leading ‘P’ was omitted from Station names, e.g., P8. We were able to repair both these errors by modifying the wrapper views in SQLShare, in the former case by expanding SELECT * FROM table to SELECT Latitude AS Longitude, Longitude AS Latitude, ... FROM table to swap the column names. In the latter case, SQLShare had automatically detected that Station contained only integers, so we had to modify the view to cast it to a VARCHAR and prepend a ‘P’. In both cases, we caught these problems when debugging queries in real time (“Why are there no results for this join?”), and were able to rapidly correct them directly in SQL.

Embedded tables: Some uploaded spreadsheets contained multiple “tables.” In a table of protein sequence and BLAST data, the first 50 or so columns contained data about the proteins found when sequencing the data and their annotations. To the right of these columns, the scientist had added aggregate results such as “Given the column identifying the most specific taxonomic group (e.g., family, genus, species) this protein is found in, how many copies of the taxa were found?”. We were able to express these derived tables as views over the raw data, and then we modified the SQLShare wrapper to remove those excess columns from the base dataset. This change highlighted another advantage of SQLShare: the tables in Excel were not stored as programs, hence the method by which they were computed was not obvious, and only represented a snapshot of the source data. In contrast, because SQLShare stores queries as views, it both documents the provenance of derived data and automatically stays updated when the base datasets change. When shown the SQLShare approach, the researcher who owned the data recognized the value of the approach and was “excited to see more.”
Table 1: A sample of the first few rows and columns of a dataset containing the measured trace metal concentrations. The left four columns give the composite key identifying the cast, station, depth, and instrument at which the water used to measure these values was sampled. The right four columns show the measured concentrations of iron (Fe) and copper (Cu), as well as standard deviations on these values. These data, provided by Jagruti Vedamati, were used in generating both Figure 1 and Figure 8 live at the workshop.

<table>
<thead>
<tr>
<th>Event</th>
<th>Station</th>
<th>Depth (m)</th>
<th>Source</th>
<th>Total Fe (nM)</th>
<th>Stdev Fe</th>
<th>Total Cu (nM)</th>
<th>Stdev Cu</th>
</tr>
</thead>
<tbody>
<tr>
<td>1004</td>
<td>P8</td>
<td>20</td>
<td>Niskin</td>
<td>0.265</td>
<td>0.012</td>
<td>1.389</td>
<td>0.036</td>
</tr>
<tr>
<td>1004</td>
<td>P8</td>
<td>33</td>
<td>Niskin</td>
<td>0.166</td>
<td>0.005</td>
<td>1.052</td>
<td>0.01</td>
</tr>
<tr>
<td>1004</td>
<td>P8</td>
<td>50</td>
<td>Niskin</td>
<td>0.164</td>
<td>0.027</td>
<td>1.089</td>
<td>0.007</td>
</tr>
</tbody>
</table>

Data in file names: Data was frequently embedded in the names of uploaded files. For example, recall that cast data from thermostalinographs (TSGs) and other instruments are collected continuously during every lowering and raising of a rosette. The natural procedure in this case was for scientists to save one file for every individual cast (identified by the Event column in our composite key). When uploaded into SQLShare, these files were named ‘event1001.cnv’, ‘event1004.cnv’, etc. (CNV is a proprietary format used by Sea-Bird Electronics in thermostalinographs and other sensors). We were able to combine these datasets using a UNION ALL statement of the form `SELECT * FROM [event1001.cnv] UNION ALL ...` to form a single unified cast data table.

Excessive processing: In several cases, uploaded datasets were overly pre-processed. The protein dataset referred above was actually a composite of many datasets concatenated together. The initial few columns contained a protein group identifier, the number of unique peptides on that protein, and the count of how many times it was found in the sample. The next 6 columns contained the top 3 functional annotations (i.e., human descriptions of what scientists believe that protein does) associated with that protein and the relative abundance of the selected function among all associated functions. When asked why he chose to do it this way, the scientist admitted that 3 functional annotations was an arbitrary choice, but that he needed to make some choice to be able to fit the data into a usable spreadsheet form. In this case, we wished we had the raw data: we could have stored the initial columns describing the sequenced protein counts separately from the functional annotation database, and we could create one or more views to produce the top 3 annotations, the top 5 annotations, or even vary the number of annotations based on a per-protein significance criterion.

6. PREPARING FOR THE WORKSHOP

In advance of the workshop, the Lead PI solicited English questions from the project participants. One intention was to get the scientists into a preparatory mindset for collaboration and integration at the workshop. The second goal was to familiarize the SQL team with both the uploaded datasets and the domain terminology we would encounter at the meeting. Translating questions in SQLShare before the meeting enabled us to better assimilate into the science discussions and more easily express queries in SQL in real time.

The responses were collected in a shared Google Doc. Before the workshop, there were 6 queries; after the workshop we had received more than 30. In Table 2, we present a few examples ordered roughly in increasing complexity.

In this section, we describe the process by which we answered these English questions using SQL.

Phase I: Translating existing analyses. The week before the meeting, the science and SQL teams at UW met face-to-face and electronically. We reviewed the organization of the data, examined two datasets, and discussed the (intra-dataset) analyses the scientists had already performed, such as the protein taxon counts found in the embedded tables described in Section 5. We were able to translate existing analyses into SQL easily, as these queries mapped directly into group-by and aggregate statements. This phase also provided an opportunity for the SQL team, who had used SQLShare only sparingly prior to this meeting, to familiarize themselves with the system.

Phase II: Answering novel queries. Next, the SQL team attempted to answer the 6 sample questions using the 30 or so datasets available (with more coming in). At first, this process was extremely difficult: datasets were often named for the category of data (e.g., ‘nutrients’), while questions referred to features (e.g., ‘phosphate’, ‘nitrate’, or ‘ammonium’). The names of columns storing a feature and the English words describing them did not align (e.g., ‘Tot.Fe.nM’ vs. ‘iron concentration’). Consequently, we began Phase II by opening each dataset in SQLShare, reading its column names and looking at a few sample rows, and perhaps performing a web search to look up certain terms. Next, it was often unclear by which features datasets should be joined. Two different datasets will rarely contain measurements using equal composite keys—only if they were taken by the same instrument during the same Event, i.e., using water samples from the same bottle on the same cast. Is it appropriate to join measurements from different casts? Does Depth have to match exactly, or can it be close (and what does “close” mean)? Many -omics datasets omitted Depth information entirely; we later learned that these datasets were collected at 5 m depth. As we found in discussion with science colleagues, in practice, scientists integrate data using Station and Depth, comparing data from different instruments and from different casts—but at the same physical location.

Concrete Example: Query 2. This query in Table 2 seeks to link iron concentrations with iron-related proteins. The data containing the iron data was easy to find using keyword search for ‘Fe’—`[V2_GEOMICCS_Fe-Cu-Mn-Zn-Vedamati.csv]`—and we gained confidence in this guess when the units used in the English query, ‘nm’, nearly matched the apparent units of the column header, ‘Tot.Fe.nM’.

Next we needed to find and count iron-related proteins. The protein dataset was one of those we analyzed in Phase I, so we already knew which dataset to use. However, the functional annotations in this dataset were human-generated text such
1. What is the relation between Syn. (bacteria, virus, Micromonas) concentration and temperature (salinity)?

2. When the iron concentration is below X nm, how many iron related proteins (based on annotations) are detected?

3. What are top 5 highest concentration organisms based on cell number (based on proteomes, based on genome) at a given depth or site?

4. Can we use a subset of well-understood phenomena to ‘ground truth’ the GeoMICS approach, documenting (hopefully) the expected linkages between genes, transcripts, and proteins, on the one hand, and processes and stocks, on the other? Examples: photosynthesis rate, limiting nutrient, plankton composition, growth rate, etc.

5. What is the correlation between each of the following metals and phosphate? Fe, Cu, Mn and Zn.

6. What is the relation between zinc and cobalt?

7. Can you plot Virus Count vs. Salinity?

8. Combine all data sets, so that we can make sense of them using ODV. Let us start by combining GDGT [Glycerol Dialkyl Glycerol Tetraether lipids], Carbon, and O2.

Table 2: Example English questions from the scientists in the GeoMICS project. Queries 1–4 are selected from those solicited before the workshop and Queries 5–8 from among those generated at the workshop.

```
<table>
<thead>
<tr>
<th>Query</th>
<th>SQL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. What is the relation between Syn. (bacteria, virus, Micromonas) concentration and temperature (salinity)?</td>
<td></td>
</tr>
<tr>
<td>2. When the iron concentration is below X nm, how many iron related proteins (based on annotations) are detected?</td>
<td></td>
</tr>
<tr>
<td>3. What are top 5 highest concentration organisms based on cell number (based on proteomes, based on genome) at a given depth or site?</td>
<td></td>
</tr>
<tr>
<td>4. Can we use a subset of well-understood phenomena to ‘ground truth’ the GeoMICS approach, documenting (hopefully) the expected linkages between genes, transcripts, and proteins, on the one hand, and processes and stocks, on the other? Examples: photosynthesis rate, limiting nutrient, plankton composition, growth rate, etc.</td>
<td></td>
</tr>
<tr>
<td>5. What is the correlation between each of the following metals and phosphate? Fe, Cu, Mn and Zn.</td>
<td></td>
</tr>
<tr>
<td>6. What is the relation between zinc and cobalt?</td>
<td></td>
</tr>
<tr>
<td>7. Can you plot Virus Count vs. Salinity?</td>
<td></td>
</tr>
<tr>
<td>8. Combine all data sets, so that we can make sense of them using ODV. Let us start by combining GDGT [Glycerol Dialkyl Glycerol Tetraether lipids], Carbon, and O2.</td>
<td></td>
</tr>
</tbody>
</table>
```

as “ribosomal protein L5”—How do we determine which of these are “related to iron”?

We used SQLShare’s interactive querying functionality to develop this query. We started by filtering the table using the obvious WHERE clause, OR Function_1 LIKE '%iron%’, and found 10 matches. Next, we added OR Function_1 LIKE '%Fe%’. This query returned 95 matches, including false matches such as “Polyribonucleotide nucleotidyltransferase”. Because of the interactive nature of writing queries in SQLShare, we spotted the problem instantly: the LIKE operator is case-insensitive in MS-SQL, so the common transferase-related proteins would become false positives. We then replaced this second clause with OR Function_1 LIKE '%Fe'[a-z]%’ to catch instances of the literal ‘Fe’. Though this formulation is imprecise, we observed that it did not result in false positives. Finally, we added a third clause to catch instances of “%fer%”, as in “ferrous” or “ferrodoxin”, which expanded the result to 19 proteins. By combining across all three functional annotations, the result expanded to 28 rows. Though this may seem small, this preliminary database of annotated proteins contains only 3130 rows, so these represent about 1% of all identified proteins.

Having developed a suitable query to identify iron related proteins, we saved this view as a derived dataset in SQLShare, [Iron-related_proteins]. Creating a separate view isolates the logic to identify iron related proteins from the rest of Query 2, labels the saved logic as a dataset with a descriptive name that can be found by keyword search, and enables this intermediate result to be reused in answering other questions. Additionally, should we need to amend the clauses in the filter for more accurate protein identification, this view can be edited later and the derived views will automatically reflect the changes.

Finally, we needed to join the iron-related protein data with the iron concentration data, which entails a simple join between the two datasets based on station and depth. However, in this case there were actually no depths that matched: the -omics protein data was collected 5m deep, while the shallowest iron measurements came from 10m down. We therefore simply selected the shallowest iron measurement at each station. The final query we used is shown in Figure 6.

This view defines a dataset that contains, for each station, the iron concentration and the total count of iron-related proteins. We also include the depth of the source of each dataset in case these are useful in later analysis. Note that while this dataset does not directly answer Query 2, for any concentration value X a trivial SELECT statement will compute the answer.

Summary and Lessons Learned. In preparation for the workshop, we familiarized ourself with the oceanographic datasets and translated some English science questions into SQL. As exemplified by Query 2, the techniques used to provide these answers were manifold but were easily mapped into SQL. Ultimately, we were successful in expressing most of the science questions available ahead of the workshop in SQLShare, with the exception of queries, such as Query 4, that appear too abstract to be answered with SQL. In some cases, talking with scientists enabled us to “compile down” these abstract queries into concrete questions.

One takeaway from Phase II was that the initial reading of the sample queries and exploration of the datasets would have been much faster if done in a tight feedback loop with the scientists that conducted the experiments. Conversely, we found that the manual process of looking through each dataset and identifying what it measured was useful, because we were then able to answer questions on-the-fly at the workshop without too much assistance from the scientists, 4At the workshop, one science participant proposed the query SELECT paper FROM data

```sql
WITH SurfaceMetals AS
    (SELECT Station, MIN([Depth..m.]) AS MinDepth
     FROM [V2_GEOMICS_Fe-Cu-Mn-Zn-Vedamati.csv]
     GROUP BY Station)
SELECT iron.Station
    , iron.[Tot.Fe.nM.]
    , SUM(protein.spectra_counts) AS ProteinSpectra
    , protein.[Depth..m.] AS [SurfacePumpDepth..m.]
    , iron.[Depth..m.] AS [MinDepth..m.]
WHERE protein.Station = iron.Station
    AND iron.[Depth..m.] = SurfaceMetals.MinDepth
    AND SurfaceMetals.Station = iron.Station
GROUP BY iron.Station
    , iron.[Tot.Fe.nM.]
    , iron.[Depth..m.]
    , protein.[Depth..m.]
```

Figure 6: The SQL to answer Query 2 finds the relationship between biological expression of iron-related proteins and the actual concentration of trace iron in the water.
7. AT THE DATA SYNTHESIS WORKSHOP

At the workshop, more than 40 investigators and students came together to review their data as a group, develop questions for further investigation, and draw some interesting conclusions from the assembled data. Much of the discussion revolved around what was different in different parts of the ocean—either east and west across stations, or vertically between different depths through the water column.

Our experiences at the meeting repeatedly underscored the value of interactivity for these types of integrative, collaborative summits. In this section, we summarize what happened at the workshop, present illustrative anecdotes showing the usefulness of our tools and approach and the transformative nature of interactivity. We conclude with a list of lessons learned.

7.1 Workshop schedule

The 2.5-day workshop began about 4 pm the first afternoon. Armbrust, the Lead PI, began with a short welcome and introduction to all the collaborators, then four scientists, representing four types of data, gave short talks with aggregate summary’s of individual participants’ initial findings in that area. The goal of these talks was to share concisely with the group the scope of data available to be analyzed at the workshop. The lead author then gave a brief overview of the SQL experts’ role and goals, and demonstrated the SQLShare, ODV adaptor, and Sage adaptor tools. He used the SQL from the example queries described in Section 6 to illustrate the types of analysis that could be performed.

The rest of the workshop consisted of three half-day breakout sessions in which four groups of scientists spread across two rooms. One SQL expert would roam each room, observing the discussion and looking for opportunities to help answer questions. On the morning of the second day, four groups doing science with similar types of data—eukaryotic molecular organisms, prokaryotic molecular organisms, underwater/metals, and organics—met together to determine the key findings of their data. In these groups, we were often asked to use SQLShare to answer specific questions such as Queries 5–7 in Table 2.

During the afternoon session of the second day, the four groups above were sliced horizontally and mixed and matched, with the goal of comparing data across domains, including taking the within-group findings of the morning and trying to correlate them across groups. These queries were more abstract and required combining more datasets (Query 8 in Table 2).

On the third day, the scientists split into groups to discuss logistics for the future of the GeoMICS collaboration. These plans included: developing a schedule of how remaining samples should be split up and analyzed; specifying holes in the collected data to be improved in the next cruise; and choosing topics for a “project report” paper to be written this summer. During this time, the SQL experts mainly worked one-on-one with a few scientists continuing the analyses of the previous day and also beginning work to analyze the key findings of this project towards the group paper.

7.2 Observations of oceanographers

We made the following observations while helping integrate and analyze data and during side discussions at the workshop.

Available technology. Oceanography is an empirical science: almost all papers are based on the interpretation of data. As computer staff are expensive, often even more costly than a full-time researcher, many of the groups have either no computer staff, or one person to help an entire department. Many PIs had used IT staff, or volunteer undergraduate help, to set up scripts, databases, or other processing pipelines in the past, but those tools were abandoned when the staff left or the students graduated. These anecdotes underscore the value of our query-as-a-service approach.

Visualization. It is already impossible to grasp a dataset of 1,000 rows, something nobody in the database community would refer to as big data. Consequently, data visualization is a key aspect of the way oceanographers get insight into the data generated by their experiments. Many at the workshop often used our Sage webapp to quickly visualize 2-variable datasets, used ODV (via our web adaptor) to analyze multivariate relations, or downloaded an integrated dataset and visualized it in R or MATLAB. For complex analyses, the choice of technology was largely based on familiarity—though the ODV adaptor greatly speeded-up context switching time—but across users the Sage workbook saw a lot of activity because of its low-overhead, fast-response-time interface.

Data Manipulation and Integration. A growing number of marine biologists and geochemists are learning programming and scripting languages as data processing becomes an increasingly important part of their science. However, this number is limited: only a few people used R or MATLAB to actually manipulate the data or combine it with other data sets (using for example R’s merge feature) on the fly. We found this lack of tool use surprising because this task is relevant not only in cross-researcher integration tasks like at this workshop, but also to compare data with external data sources, such as gene databases or satellite pictures. The data format of these sources may be relational, but may also come in the form of an image or XML. Without our help, the main means by which researchers compared a dataset A with some other dataset B was to display pre-generated visualizations of A and B side-by-side rather than integrating the data so that they could be compared quantitatively. For these reasons, it appeared that without our help most cross-dataset questions could not have been be answered at the meeting, even though the necessary data was already available. We posit that this
technological “friction” could cause scientists to subtly choose to favor questions that involve fewer technology-intensive tasks, an effect that can accumulate over time into a shift in research directions.

Hidden Semantics. One reason it is challenging to integrate data from multiple sources is that the data’s semantics are not sufficiently captured. Many details are only available in a researcher’s mind. Data transformations, either performed by hand or programmatically, are often not properly documented such that the detailed provenance of a given dataset is unrecoverable. When asked, many researchers agreed that they would not be able to recreate a paper from their raw data two years later. Without reproducibly, it is impossible to compare or combine results from publications to ask new questions or to obtain higher statistical significance.

SQLShare helps resolve these issues by making it easy for researchers to tag and add metadata to datasets, including calibration parameters. In our own exploration of the data, we used SQLShare to compute some aggregates such as “At what stations and depths were the most water samples collected using Niskin bottles?”, thereby gaining insight as to how much data of what types was collected during the cruise. One would normally have to develop a custom R or Python script to access this information, but with the experimental metadata stored in a database, this information is “only a query away”. Additionally, SQLShare’s view-oriented strategy documents data transformations so that they can be scrutinized after the fact. Repeating a scientists’ analysis or recomputing it with updated data requires only re-accessing the data returned by the view; the results are re-computed on the fly.

7.3 The role of interactivity

The availability of our interactive tools changed the nature of the meeting from “planning” to “doing.”

Interactive hypothesis generation and testing. For one of the first queries, a PI and her student requested a plot of total virus counts as a function of salinity. With the scientists directing us to the relevant datasets, we computed the join in SQLShare and generated a plot in Sage, which showed a strong linear anti-correlation—viruses apparently prefer less salty water. The scientist then called over another PI and her student, who had generated profiles counting specific types of virus using a different methodology. We joined the derived data with the new student’s data, and then we visualized each individual species against the total virus, without finding a significant relationship. Next, a dataset of the total bacteria counts from a third lab was joined, and this time the graph showed a strong positive correlation, with a few off-diagonal points that had proportionally “extra” virus. **Without the interactive visualization tools, the in-person analysis would likely have stopped at posing the initial question.**

Interactive quality control. Not uncommonly, we noticed a question could not be answered because data was not collected during the trip or not yet uploaded to SQLShare. In other cases, **we detected a mistake in the query during the visualization process** because certain values did not make sense. One scientist who imported a multi-joined dataset into ODV told us that the data could not be valid, as several stations were missing. Looking at the query, we quickly realized that an inner join had eliminated much of the data, and rewrote the query as an outer join. In another case, swapped latitude and longitude (Section 5) were found when ODV plotted the cruise in the wrong part of the world.

Interactive interdisciplinary cross-validation. Between breakout sessions, each group would assemble its findings and then the leader would present them to the entire meeting. In the morning session on the second day, the within-discipline members of breakout compared and contrasted their findings on “like” data, often integrating it in SQLShare and visualizing the integration to present a unified (or differing) perspective on the phenomena being studied, such as zinc limitation (when not enough zinc is present to satisfy the needs of certain organisms). In the afternoon session, members of different disciplines worked together to integrate their data and refine their findings using data of fundamentally different types, e.g., concentrations of about trace metals with measurements of nutrients. **The ability to quickly and easily integrate disjoint data types together enabled joins of up to 8 different (cleaned) datasets, e.g., Query 8, and multi-variate analysis to be conducted.**

7.4 Results and lessons learned

Overall, we generated 39 derived datasets during the workshop, which were used actively during the workshop and preserved for later analyses.

What went right:

- One concern was that the SQLShare system processing would be a bottleneck for interactive analysis. Other successful scientific database systems, such as the Sloan Digital Sky Survey [11], use a carefully-engineered schema, indexes, stored procedures, and distributed processing. In contrast, SQLShare runs on a single Microsoft Windows Azure SQL instance, ad hoc schema chosen by the system at runtime, and there are no indexes. Would JOIN-intensive workloads on SQLShare suffer as a result? Figure 7 shows the runtime of 532 queries generated at the data synthesis workshop. A
What went wrong:
- Workshops started without the data being available (or so large that we couldn’t answer every question that came up during the workshop. This issue was not fundamental: principally, it was due to a shortage of time—we could have conducted a controlled experiment to test this hypothesis. However, we hypothesize that general purpose languages, workflow tools, and GUI applications would struggle in this context by requiring significant development time or by severely constraining expressiveness, or both. In future work, it would be useful to conduct a controlled experiment to test this hypothesis.

Key lesson is that in the high-variety regime, queries are fast. Fully 80% of queries completed within 100ms, 95% of queries finished in under 1s, and all queries took less than 10s.
- We found that the ability to integrate data from different datasets and visualize them in real-time was indeed valuable. Almost every graph or result presented at the workshop plan to adopt this approach going forward.
- We found that the ability to integrate data from different datasets and visualize them in real-time is interesting in its own right, and the region at the lower left where zinc is low indicates “Zinc stress”. The need to further explore the relationship between zinc and cobalt was a key finding of this meeting.

Figure 8: This graph, part of a larger multi-variate analysis, shows the relationship between zinc and cobalt (Query 6). That zinc and cobalt are generally anti-correlated is interesting in its own right, and the region at the lower left where zinc is low indicates “Zinc stress”. The need to further explore the relationship between zinc and cobalt was a key finding of this meeting.

What went wrong:
- Workshops started without the data being available (or so large that we couldn’t answer every question that came up during the workshop. This issue was not fundamental: principally, it was due to a shortage of time—we could have used at least twice as many data specialists. In other cases it was because the data were not yet available (or so large that the researchers had not completed uploading them when the workshop started).
- There was occasional language mismatch. In the first

Future opportunities:
- Although the REST API allowed two different visualization services to be developed and deployed in a single day, they were important enough to the process to motivate building visualization capabilities natively in SQLShare, as well as providing an interface to tools such as Tableau.
- In this experiment, we did not attempt to have scientists write SQL queries themselves, but the ability to “self-serve” is clearly desirable. A system that allows a complete novice to walk up and write queries of a comparable complexity to the ones we have described with no training represents an ambitious research goal for a collaboration between the database, HCI, and eScience communities.
- Our success was assisted by the use of top-down standards to homogenize the data, and some up-front cleaning in the days leading up to the event. In some situations, even these minor luxuries are not available. A system that can achieve similar results with zero assumptions about the data is an important goal.
- The UI performance was more important than we anticipated. Even minor delays can adversely affect the experience for the user and the experts.
- We did not have a control in this experiment; we are not able to conclude that SQL is any more effective than any other approach for this purpose. However, we hypothesize that general purpose languages, workflow tools, and GUI applications would struggle in this context by requiring significant development time or by severely constraining expressiveness, or both. In future work, it would be useful to conduct a controlled experiment to test this hypothesis.

8. RELATED WORK

Google Fusion Tables allows direct upload of data, limited GUI-based queries, a REST API, and rich visualization capabilities. Fusion Tables shares a similar motivation with SQLShare, but cannot express even the routine tasks we encounter working with scientists (multi-key joins, set operators, common user-defined functions) [3].

The Sloan Digital Sky Survey [11] exposed a multi-terabyte astronomy database over the web through public SQL interfaces, and demonstrated that researchers can and will write SQL queries. The effect the SDSS project had on the field is difficult to overstate; a generation of astronomers now learn SQL in their training, and thousands of papers have been written based on accessing data through SQL. Unlike SDSS, we are exploring scenarios where relying on an pre-engineered schema is not feasible, typically because the cost of developing it cannot be amortized over enough time and use, or because the data are too diverse. SQLShare represents an approach to achieve similar results as SDSS for smaller-scale projects that do not have access to significant database programming expertise.

Other public databases such as the Gene Ontology database [2] and NCBI [7] support SQL access either through client tools or specialize web applications. They do not allow users to upload their own datasets.

Galaxy is a popular web-based workflow engine popular in the life sciences that allows users to create and share data processing pipelines. Relational algebra operators are included in the set of algorithms available, implying that users are interested in basic database queries. Galaxy offers no declarative query language and no support for algebraic optimization, making it infeasible for use in the real-time, interactive scenario we describe in this paper. Other workflow systems including VisTrails, Taverna, and Kepler are also not designed for real-time pipeline authoring, and could not automatically accommodate the unusual file formats we encounter in practice. SQLShare’s view-oriented design enhances interactivity relative to pipeline systems: To change an early step in a Galaxy pipeline, a user must manually re-execute all successive steps; in contrast, SQLShare datasets automatically return updated results whenever the views are queried. Perhaps most importantly, we found that these tasks simply did not require the customized data processing pipelines emphasized by these systems: SQL was more than sufficient.

OData [8] is a standardized API for accessing and querying data over the web. The OData API supports only basic filtering on individual tables and cannot be used to express joins or other non-trivial queries.

9. CONCLUSIONS

Our hypothesis was that declarative query languages could be used to facilitate interactive, collaborative science even without the benefit of an engineered schema. We tested this hypothesis anecdotally by ingesting heterogeneous science data into a web-based query-as-a-service system called SQLShare and participating in a research meeting with geochemical oceanographers and microbial ecologists, attempting to write queries in real-time in response to the discussion. This experiment was a success: we received highly favorable feedback from the researchers, and authored 39 reusable views representing researchers’ hypotheses. The technology and approach fundamentally changed the meeting by allowing scientific Q&A while the collaborators were all present to discuss the findings, as opposed to working independently when they returned to their labs.

Acknowledgments

We would like to acknowledge all the participants of the GeoMICS workshop for their help and sharing the data for this paper. We would particularly like to thank James Moffett and Jagruti Vedamati for the use of their unpublished data. We would also like to thank David Meier for his helpful comments, as well as the anonymous referees. This work was sponsored in part by NSF Award #1154074, NSF Award #1205233, the Gordon and Betty Moore Foundation, and the Intel Science and Technology Center on Big Data.

10. REFERENCES