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ABSTRACT
RSSI is known to be a fickle indicator of whether a wireless link
will work, for many reasons. This greatly complicates operation
because it requires testing and adaptation to find the best rate, trans-
mit power or other parameter that is tuned to boost performance.
We show that, for the first time, wireless packet delivery can be
accurately predicted for commodity 802.11 NICs from only the
channel measurements that they provide. Our model uses 802.11n
Channel State Information measurements as input to an OFDM re-
ceiver model we develop by using the concept of effective SNR. It
is simple, easy to deploy, broadly useful, and accurate. It makes
packet delivery predictions for 802.11a/g SISO rates and 802.11n
MIMO rates, plus choices of transmit power and antennas. We re-
port testbed experiments that show narrow transition regions (<2 dB
for most links) similar to the near-ideal case of narrowband, fre-
quency-flat channels. Unlike RSSI, this lets us predict the highest
rate that will work for a link, trim transmit power, and more. We use
trace-driven simulation to show that our rate prediction is as good
as the best rate adaptation algorithms for 802.11a/g, even over dy-
namic channels, and extends this good performance to 802.11n.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network Archi-
tecture and Design—Wireless Communication

General Terms
Design, Experimentation

1. INTRODUCTION
Wireless LANs based on 802.11 are used almost everywhere,

from airports to zoos and in urban, suburban and rural areas. Mod-
ern wireless NICs provide a large and growing range of physical
layer configurations to obtain good performance across this range
of environments. With 802.11n, the latest version of the standard
that ships on most laptops, combinations of modulation, coding and
spatial streams offer rates from 6 Mbps to 600 Mbps [1]. Other im-
portant choices include transmit power, channel, and antennas.

For good performance, reliability and coverage, the physical layer
settings should match the RF channel over which the wireless sig-
nals are sent. This is evident in rate adaptation schemes [5, 10, 14,
28] that determine the highest rate for transmission, since a good
scheme has a large effect on throughput. Other work adapts trans-
mit power to reduce co-channel interference [17, 21, 25].
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In theory, it is simple to select the physical layer configuration
because this is directly determined by the specifics of the RF chan-
nel. The signal-to-noise ratio (SNR) is the gold standard for per-
formance in narrowband channels. Textbook formulas relate the
error rate of different modulations to the SNR [27]. The best rate or
required transmit power is then simple to compute.

In practice, 802.11 LANs have never used channel measurements
as more than a coarse indicator of expected performance. There
have simply been too many ways in which the observed measure-
ments and actual performance fail to match the predictions of the-
ory. For example, the most accessible channel measurement is re-
ceived signal strength indication (RSSI), which serves as a proxy
for the true SNR. RSSI measurements are samples that may vary
over packet reception, be mis-calibrated, or be corrupted by in-
terference, all of which are known to be issues in practice [6, 10,
22]. Even if RSSI were perfect, it does not reflect the frequency-
selective fading of 802.11 channels, which are not close to narrow-
band. Nor does it account for imperfect receivers that may greatly
degrade performance [3, 10]. Due to these factors, the minimum
RSSI at which a rate starts to work varies by more than 10 dB for
real links [22, 30, 31].

To reconcile these viewpoints, a form of guided search is widely
used in practice to select operating points [21, 24, 29]. Packet de-
livery is simply tested for a rate or transmit power to see how well
it works. If the loss rate is too high, a lower rate (or more power) is
used, otherwise a higher rate (or less power) is tested. SampleRate
is a well-known algorithm of this kind for finding transmit rates [5].
This approach is very effective for slowly varying channels and sim-
ple configurations (e.g., a few rates with fixed transmit power and
channel) since the best setting will soon be found.

However, search becomes less effective as channels change more
quickly and the configuration space becomes more complex. Both
of these factors are trends: 802.11 clients are increasingly used
when they are truly mobile, both walking and in vehicles; and NICs
that are now being deployed with 802.11n depend on multiple an-
tennas, which adds another dimension to and increases the size of
the search space. Also, tuning combinations such as rate and power
is much more complex.

For rate selection, recent work has made headway by measur-
ing symbol-level details of packet reception. In particular, SoftRate
uses the output of soft-Viterbi decoding for each symbol to estimate
the bit error rate (BER) [28]. This allows it to predict the effects on
packet delivery of changing the rate. AccuRate uses symbol er-
ror vectors for the same purpose [23]. However, these methods
are not defined for selecting other useful parameters, such as trans-
mit power, and they do not extend from 802.11a/g to 802.11n, e.g.,
when selecting antennas or numbers of spatial streams.

In this work, we return to the basic problem of using theory to
connect the performance of 802.11 NICs on real links to measured
channels in practice. The opportunity to make progress has arisen
for two reasons. First, 802.11n NICs measure the channel at the
OFDM subcarrier level to support MIMO (multiple antenna) op-
eration. They report this information in a standard Channel State
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Information (CSI) format [1]. This provides a much richer source
of information than RSSI. Note that this CSI naturally applies to
802.11a/g rates because they are a subset of 802.11n rates. Sec-
ond, modern NICs use OFDM, which gives channel estimates that
are less susceptible to interference than spread spectrum (because
of lower correlation), and are calibrated. Both factors lead to more
meaningful measurements than in the past.

We use the CSI as input to a model of receiver processing that we
develop to predict packet delivery. Our model uses the concept of
an effective SNR for a multi-carrier channel [18], such as OFDM,
in which there are different subcarrier SNRs, plus approximations
for coding, interference between MIMO streams, and decoding al-
gorithms. It requires no per-link calibration and predicts delivery
for a wide range of configurations (including rates, transmit power,
antenna selection, and spatial streams) from a single CSI measure-
ment. We also expect it can be extended to new factors such as
beamforming for even wider applicability in the future.

We make two contributions in this paper. Our main contribution
is to show how to accurately predict the performance of commodity
802.11 OFDM NICs over real links using only the channel mea-
surements that the NIC provides. We believe this to be a first. Our
packet delivery model is evaluated with measurements over two sta-
tionary indoor wireless testbeds built from PCs and 3-antenna In-
tel 802.11a/g/n NICs. For a wide range of configurations, we can
predict whether a link will successfully deliver packets (>90%),
outside of a narrow (<2 dB for most links) uncertainty region that
is similar to behavior over the near-ideal channel of nodes con-
nected by a wire. This lets us consistently predict the best rate
to use over a channel, and perform other tasks such as trim ex-
cess transmit power. In contrast, RSSI often fails to reflect perfor-
mance by a wide enough margin that it does not reliably predict
the best rate or power setting, especially for dense modulation and
higher coding rates (transition >7 dB for 10% of the links). A key
factor in this improvement is the use of effective SNR to capture
frequency-selective fading, which is clearly visible in our testbeds.
No published work has explored effective SNR measures in 802.11
beyond simulation, to the best of our knowledge. Note that our ef-
fective SNR model does not predict the performance of links under
interference. However, our measurements show that its estimate
of interference-free link quality is robust to interfering transmis-
sions (§5). We also discuss ways to handle persistent interference.

Our method is practical and can be applied to many classic prob-
lems, including rate adaptation, transmit power tuning, and channel
and antenna selection. While we must leave most of this to future
work, we demonstrate how our model can inform rate adaptation.
Our second contribution is a rate selection algorithm that is as good
as the best 802.11a/g rate adaptation algorithms and extends this
excellent performance to 802.11n. Our algorithm simply uses our
model to predict the highest rate for the channel, repeating to track
the channel over time. We use a trace-driven simulation to compare
it with SampleRate, which is widely used in practice, and SoftRate,
which has the best published performance. Our algorithm tracks
the best rate nearly as well as is possible, even for dynamic mobile
channels. It performs very well for MIMO rates, and supports en-
hancements such as transmit power trimming and antenna selection.
As far as we are aware, there is no other reported work on 802.11n
rate adaptation that is evaluated for real, 802.11 channels, and no
other rate adaptation algorithms that support these enhancements.

In the rest of this paper, we first motivate the need for better de-
livery predictions in §2, and then present our model in §3. Our ex-
perimental testbeds are described in §4, and our model is evaluated
in §5. In §6, we use simulation to study rate selection guided by
our model. §7 discusses related work, and §8 concludes the paper.

Modulation Coding Rate Data Rate (Mbps)

BPSK 1/2 6.5
QPSK 1/2 13.0
QPSK 3/4 19.5

QAM-16 1/2 26.0
QAM-16 3/4 39.0
QAM-64 2/3 52.0
QAM-64 3/4 58.5
QAM-64 5/6 65.0

Table 1: 802.11n single-stream rates.

2. MOTIVATION
Existing predictions of packet delivery for a given link are based

on its Received Signal Strength Indication (RSSI) value. This is
widely available as a proxy for the SNR. We characterize this map-
ping to motivate our research.

802.11 Setting. Our work applies to 802.11a/g/n radios that use
coded Orthogonal Frequency Division Multiplexing (OFDM). 20 or
40 MHz channels are divided into 312.5 kHz bands called subcar-
riers, each of which sends independent data simultaneously. Con-
volutional coding is applied across the bits for error correction and
bits are interleaved to spread them in frequency. Each subcarrier
in a packet is modulated equally, using BPSK, QPSK, QAM-16, or
QAM-64, with 1, 2, 4 or 6 bits per symbol, respectively. The data
rates depend on the combination of modulation and coding.

Our experimental platform uses 802.11n radios that operate on
20 MHz channels. The single-stream 802.11n rates are shown in
Table 1. The main innovation in 802.11n is the use of multiple an-
tennas for spatial multiplexing. By using MIMO processing, multi-
ple streams can be sent at the same time, each at the single-stream
rate, for higher overall rates. Note that the details of single-stream
802.11n differ slightly from 802.11a/g (optimized coding rates and
more data subcarriers), but in ways that are not material for our
work so that we can treat 802.11n as a superset of 802.11a/g.

Packet Delivery versus RSSI/SNR. Textbook analyses of modu-
lation schemes give delivery probability for a single signal in terms
of the signal-to-noise (SNR) ratio [8], typically expressed on a log
scale in decibels. This model holds for narrowband channels with
additive white Gaussian noise. It predicts a sharp transition region
of 1–2 dB over which a link changes from extremely lossy to highly
reliable. This makes the SNR a valuable indicator of performance.

RSSI values reported by NICs give an estimate of the total sig-
nal power for each received packet. From RSSI, the packet SNR
can then readily be computed using NIC noise measurements.1 We
generated performance curves using SNR for a real 802.11n NIC
over a simple wired link with a variable attenuator and for a sin-
gle transmit and receive antenna. The result is shown for all single
antenna 802.11n rates in Figure 1(a). We observe a characteristic
sharp transition region for packet reception rate (PRR) versus SNR.
This is despite the relatively wide 20 MHz channel, 56 OFDM sub-
carriers, coding and other bit-level operations. This is the behavior
we want from a link metric in order to predict packet delivery.

In contrast, packet delivery over real wireless channels does not
exhibit the same picture. Figure 1(b) shows the measured PRR ver-
sus SNR for three sample rates (6.5, 26, and 65 Mbps) over all wire-
less links in our testbeds, using the same 802.11n NICs. The SNR
of the transition regions can exceed 10 dB, so that some links easily
work for a given SNR and others do not. There is no longer clear
separation between rates. This is consistent with other reported
1We refer to the metric computed from RSSI and noise measure-
ments as the packet SNR, RSSI-based SNR, or simply RSSI.
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(a) A wired 802.11n link with variable attenuation has a
predictable relationship between SNR and packet recep-
tion rate (PRR) and clear separation between rates.
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(b) Over real wireless channels in our testbeds, the transition
region varies up to 10 dB. This loses the clear separation be-
tween rates (and so only three rates are shown for legibility).

Figure 1: Measured (single antenna) 802.11n packet delivery
over wired and real channels.

measurements that show RSSI does not predict packet delivery for
real links [3, 22, 30, 31].

Impact of Frequency-Selective Fading. Many possible factors
cause the observed variability for real channels, including NIC cal-
ibration, interference, sampling, and multipath. Here, we look at
frequency-selective fading due to multipath, as our experiments
show this to be a major factor.

Multipath causes some subcarriers to work markedly better than
others although all use the same modulation and coding. These
channel details, and not simply the overall signal strength as given
by RSSI, affect packet delivery. Figure 2 illustrates this with the
measured subcarrier SNRs for four different links in our testbed
averaged over a 5-second run. All links are shown at the closest
transmit power level, in steps of 2 dB, to 80% packet delivery when
using the 52 Mbps rate. However, the fading profiles vary signifi-
cantly across the four links. One distribution is quite flat across the
subcarriers, while the other three exhibit frequency-selective fading
of varying degrees. Two of the links have two deeply-faded subcar-
riers that are more than 20 dB down from the peak.

These links harness the received power with different efficien-
cies. The more faded links are more likely to have errors that must
be repaired with coding, and require extra transmit power to com-
pensate. Thus, while the performance is roughly the same, the
most frequency-selective link needs a much higher overall packet
SNR (30.2 dB) than the frequency-flat link (16.5 dB). This differ-
ence of almost 14 dB highlights why RSSI-based SNR does not re-
liably predict performance. Fading and its effects are well-known.
However, it is rare to see data that shows fading for real links and
NICs because it has been difficult to measure.

Impact of multiple streams. The use of multiple antennas adds an-
other dimension to the problem of predicting packet delivery. While
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Figure 2: Channel gains on four links that perform about
equally well at 52 Mbps. The more faded links require larger
RSSIs (i.e., more transmit power) to achieve similar PRRs.

we do not present further motivating data here, we briefly note that
this makes the problem more difficult, not simpler. To begin with,
there is now an RSSI for each receive antenna. This makes it dif-
ficult to know which RSSI or function of RSSIs to use to predict
delivery even when there is a single spatial stream. When multiple
streams are sent simultaneously, they interfere on the channel. The
MIMO processing used to separate them depends on the details of
the channel, and less of the signal will be harnessed if the RF paths
are correlated. This adds variability that exacerbates fading effects.

3. PACKET DELIVERY MODEL
Our goal is to develop a model that can accurately predict the

packet delivery probability of commodity 802.11 NICs for a given
physical layer configuration operating over a given channel. We
want our model to be simple and practical, so that it can be readily
deployed, and to cover a wide range of physical layer configura-
tions, so that it can be applied in many settings and for many tasks.
In particular, the scope of our model is 802.11n including multiple
antenna modes, of which single antenna 802.11a/g is a subset. This
scope is sufficient for many current and future networks. We model
delivery for single packet transmission only, leaving extensions for
interference and spatial reuse to future work.

Model Design. The structure of our model is simple: given 1) the
current state of the RF channel between transmitter and receiver,
and 2) a target physical layer configuration of the NIC, it predicts
whether that link will reliably deliver packets in that configuration.

For the first piece of input, we use 802.11n Channel State In-
formation (CSI). The CSI is a collection of MxN matrices Hs in
which each describes the RF path (SNR and phase) between all
pairs of N transmit and M receive antennas for one subcarrier s.
It is reported by the NIC in a format specified by the standard [1],
with details in §4.2. An 802.11n NIC can probe a receiver to gather
CSI, or use channel reciprocity to learn CSI from a received packet.
The CSI is a much richer source of information than the RSSI, and
it gives us the opportunity to develop a much more accurate model.

The second form of input is the target physical layer configura-
tion for which we want to predict delivery. This is specified as the
choice of transmit and receive antennas, transmit power level, and
transmit rate (as the combination of modulation, coding, and num-
ber of spatial streams). Other choices, such as beamforming, could
be added in the future. The only restriction is that the CSI includes
the antennas and subcarriers used in the target configuration.

For the model output, we define that the link will work, i.e., will
reliably deliver packets, if we predict ≥90% packet reception rate.
We do not try to make predictions in the transition region during
which a link changes from lossy to reliable. Predictions there are
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Figure 3: The 802.11n MIMO-OFDM decoding process. MIMO receiver separates the RF signal (0) for each spatial stream (1).
Demodulation converts the separated signals into bits (2). Bits from the multiple streams are deinterleaved and combined (3) followed
by convolutional decoding (4) to correct errors. Finally, scrambling that randomizes bit patterns is removed and the packet is
processed (5).

Modulation Bits/Symbol (k) BERk(ρ)

BPSK 1 Q
(√

2ρ
)

QPSK 2 Q
(√
ρ
)

QAM-16 4 3
4
Q
(√

ρ/5
)

QAM-64 6 7
12
Q
(√

ρ/21
)

Table 2: Bit error rate as a function of the symbol SNR ρ for
narrowband signals and OFDM modulations. Q is the standard
normal CDF.

likely to be variable, and simply knowing when the link starts to
work is useful information in practice.

802.11 Packet Reception. The model must account for the action
of the 802.11 receiver on the received signal. This is a complex pro-
cess described in many pages of the 802.11n specification [1]. Our
challenge is to capture it well enough with a fairly simple model.
We begin by describing the main steps involved (Figure 3).

First, MIMO processing separates the signals of multiple spatial
streams that have been mixed by the channel. As wireless chan-
nels are frequency-selective, this operation happens separately for
each subcarrier. The demodulator converts each subcarrier’s sym-
bols into the bits of each stream from constellations of several dif-
ferent modulations (BPSK, QPSK, QAM-16, QAM-64). This hap-
pens in much the same way as demodulating a narrowband channel.
The bits are then deinterleaved to undo an encoding that spreads
errors that are bursty in frequency across the data stream. A paral-
lel to serial converter combines the bits into a single stream. For-
ward error correction at any of several rates (1/2, 2/3, 3/4, and 5/6)
is then decoded. Finally, the descrambler exclusive-ORs the bit-
stream with a pseudorandom bitmask added at the transmitter to
avoid data-dependent deterministic errors.

Modeling Delivery. We build our model up from narrowband de-
modulation. Standard formulas summarized in Table 2 relate SNR
(denoted ρ) to bit-error rate (BER) for the modulations used in
802.11 [8]. CSI gives us the SNR values (ρs) to use for each sub-
carrier. For a SISO system, ρs is given by the single entry in Hs.

In OFDM, decoding is applied across the demodulated bits of
subcarriers. If we assume frequency-flat fading for the moment,
then all the subcarriers have the same SNR. The link will behave
the same as in our wired experiments in which RSSI reflect real
performance and it will be easy to make predictions for a given SNR
and modulation combination. We can use Figure 1(a) to measure
the fixed transition points between rates and thus make our choice.

Frequency-selective fading complicates this picture as some weak
subcarriers will be much more likely to have errors than others that
are stronger. To model a link in this case, we turn to the notion of an
effective SNR. This is defined as the SNR that would give the same

error performance on a narrowband channel [18]. For example,
the links in Figure 2 will have effective SNR values that are nearly
equal because they perform similarly, even though their RSSIs are
spread over 15 dB.

The effective SNR is not simply the average subcarrier SNR; in-
deed, assuming a uniform noise floor, that average is indeed equiv-
alent to the packet SNR derived from the RSSI. Instead, the effec-
tive SNR is biased towards the weaker subcarrier SNRs because it
is these subcarriers that produce most of the errors. If we ignore
coding for the moment, then we can compute the effective SNR by
averaging the subcarrier BERs and then finding the corresponding
SNR. That is:

BEReff,k =
1

52

∑
BERk(ρs) (1)

ρeff,k = BER−1
k (BEReff,k) (2)

We use BER−1
k to denote the inverse mapping, from BER to SNR.

We have also called the average BER across subcarriers the effec-
tive BER, BEReff. SoftRate estimates BER using internal receiver
state [28]. We compute it from channel measurements instead.

Note that the BER mapping and hence effective SNR are func-
tions of the modulation (k). That is, unlike the RSSI, a particular
wireless channel will have four different effective SNR values, one
describing performance for each of the modulations. In practice, the
interesting regions for the four effective SNRs do not overlap be-
cause at a particular effective SNR value only one modulation will
be near the transition from useless (BER ≈0.5) to lossless (BER
≈0). When graphs in this paper are presented with an effective SNR
axis, we use all four values, each in the appropriate SNR range.

For 802.11n, we also model MIMO processing at the receiver.
To do this we need to estimate the subcarrier SNRs for each spa-
tial stream from the channel state matrix Hs. Although the stan-
dard does not specify receiver processing, we assume that a Min-
imum Mean Square Error (MMSE) receiver is used. It is compu-
tationally simple, optimal and equivalent to Maximal-Ratio Com-
bining (MRC) for a single stream, and near optimal for multiple
streams. All of these make it a likely choice in practice. The SNR
of the ith stream after MMSE processing for subcarrier s is given
by ρs,i = 1/Yii − 1, where Y =

(
HH

s Hs + I
)−1

for i ∈ [1, N ]
and NxN identity matrix I [27]. For MIMO, the model computes
the effective BER averaged across both subcarriers and streams.

Coding interacts with the notion of effective SNR in a way that
is difficult to analyze. One challenge is that the ability to correct
bit errors depends on the position of the errors in the data stream.
To sidestep this problem, we rely on the interleaving that random-
izes the coded bits across subcarriers and spatial streams. Assum-
ing perfect interleaving and robust coding, bit errors in the stream
should look no different from bit errors for flat channels (but at a
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Figure 4: Our indoor 802.11n testbeds, T1 and T2. T1 consists of 10 nodes spread over 8 100 square feet, and T2 consists of 11 nodes
spread over 20 000 square feet. The nodes are placed to ensure a large number of links between them, a variety of distance between
nodes, and diverse scattering characteristics.
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Figure 5: Sample faded link showing the packet SNR and ef-
fective SNRs for different modulations. BPSK has the lowest
effective SNR, but it needs less energy to decode.

lower SNR). Thus our estimate of the effective BER in Eq. (1) will
accurately reflect the uncoded error performance of the link. Our
algorithm now proceeds as in the case of a flat-fading channel de-
scribed above: we take the computed effective SNR value and use
the measurements from a flat-fading link (Figure 1(a)) to determine
transmission success or failure. As in CHARM [10], we support
different packet lengths with different SNR thresholds.

Note that this procedure differs from the typical approach of
simulation-based analyses [11, 15, 19], that instead map the un-
coded BER estimate such as we compute to a coded BER esti-
mate by means of a simple log-linear approximation. They then
use the coded BER estimate, and the length of the target transmis-
sion, to directly compute the packet delivery rate of the link. We
believe our method of thresholding the effective SNR is better be-
cause it directly accommodates variation in the receiver implemen-
tation. Different devices may have different noise figures, a measure
of how much signal strength is lost in the internal RF circuitry of
the NIC. They may implement soft Viterbi decoders with more or
fewer soft bits for their internal state, or indeed might do hard de-
coding instead. A receiver could use the optimal Maximum Like-
lihood MIMO decoder that has exponential complexity for small
constellations like BPSK, but revert to the imperfect but more ef-
ficient MMSE at higher modulations. All of these can be easily
expressed, albeit maybe approximately, as (perhaps modulation-
dependent) shifts in the effective SNR thresholds. In contrast, chang-
ing these parameters in the simulation approach involves changing
the internals of the calculation.

Protocol Details. Effective SNR calculations can be performed by
either receiver or transmitter, and each has advantages. For it to
make decisions, the transmitter must know the receiver’s thresholds

for the different rates; these are fixed for a particular model of NIC
and can be shared once, e.g., during association. The transmitter
also needs up-to-date CSI: either from feedback or estimated from
the reverse path. Alternately, the receiver can request rates and se-
lect antennas directly using the new Link Adaptation Control field
of any 802.11n QoS packet [1, §7.1.3.5a]. This obviates sending
CSI, but the calculation instead requires that the transmitter share
its spatial mappings, i.e. how it maps spatial streams to transmit an-
tennas. These are likely to change less frequently than the channel,
if at all. Finally, when operating in either mode with fewer trans-
mit streams than antennas, the transmitter must occasionally send a
short probe packet with all antennas to measure the full CSI.

Summary and Example. Combining the above steps, our model
consists of the following: 1) CSI is obtained and a test config-
uration is chosen; 2) the MMSE expression is used to compute
per-stream, subcarrier SNRs from the CSI for the test number of
streams; 3) the effective SNR is computed from the per-stream,
subcarrier SNRs for the test modulation; and 4) the effective SNR
is compared against the pre-determined threshold for the test mod-
ulation and coding to predict whether the link will deliver packets.

As an example, Figure 5 shows the CSI for a SISO link (steps 1–
2) as a fading profile across subcarriers, with the computed effective
SNRs for all modulations (step 3). These effective SNRs are com-
pared with pre-determined thresholds (step 4, see §5) to correctly
predict that the best working rate will be 39 Mbps. Note that these
effective SNRs are well below the RSSI-based packet SNR that is
biased towards the stronger subcarriers (note the logarithmic y-axis
scale). This link does a poor job of harnessing the received power
because it is badly faded, so its RSSI is a poor predictor of rate.

Applications can use this model to find useful configurations
without sending packets to test them. For example, the highest rate
can be predicted by running the model for all candidate rates and
selecting the best working rate. Alternatively, we could predict the
minimum transmit power to support a rate.

4. TESTBEDS
We conduct experiments using two stationary wireless testbeds

deployed in indoor office environments, T1 and T2 (Figure 4). T1
consists of 10 nodes spread over 8 100 square feet. T2 is less dense
by comparison with 11 nodes over 20 000 square feet. Each testbed
covers a single floor of a multi-story building and has a variety of
links in terms of maximum supported rate and line-of-sight versus
multi-path fading. We conduct mobile experiments using laptops
that interact with testbed nodes and are configured in the same way.
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4.1 Node Configuration
Each node is a stationary desktop or portable laptop equipped

with an Intel Wi-Fi Link 5300 (iwl5300) a/b/g/n wireless network
adapter. They run the Linux 2.6.34 kernel with a modified version
of the iwlagn driver [2]. These 802.11n MIMO NICs have three
antennas and support many new features of 802.11n.

We use up to three transmit and receive antennas, supporting
up to three MIMO streams, and the rates in Table 1 per stream.
This corresponds to equal modulation across streams defined in the
802.11n standard.

Other physical layer parameters are set to 802.11a/g default val-
ues where possible, including 20 MHz channels and an 800 ns sym-
bol guard interval. Each testbed operates on a 5 GHz channel unoc-
cupied in its environment; there was no noticeable interference.

4.2 Measurement Tools
Our hardware enables us to vary the transmit power level from
−10 dBm to 16 dBm in steps of 0.5 dB, and divides power equally
across streams. For each received packet the NIC reports the tra-
ditional metrics of RSSI per receive antenna, noise floor and the
setting on the automatic gain controlled (AGC) amplifier. These
combine to define the per-receive-chain packet SNR (ρpacket):

ρpacket = RSSI (dBm)− Noise (dBm)− AGC (dB) (3)

The iwl5300 calculates the quantities RSSI and Noise as the re-
spective sums of average signal strength and average error vector
magnitude in each OFDM subcarrier [2]. This is exactly the tradi-
tional definition of SNR applied to OFDM.

Channel state information (CSI). The channel sounding mech-
anism added in 802.11n defines a management frame used to re-
port the CSI from the receiver of a frame back to the transmitter.
This mechanism is intended for calibration or to inform transmit
beamforming, and we co-opt it for our experiments. We configure
the NIC to compute this feedback packet for every received frame,
rather than just during sounding, and send it up to the driver in-
stead of back to the transmitter. The iwl5300 provides CSI in a
format that reports the channel matrices for 30 subcarrier groups,
which is about one group for every 2 subcarriers at 20 MHz. Each
channel matrix entry is a complex number, with signed 8-bit resolu-
tion each for the real and imaginary parts. It specifies the gain and
phase of the spatial path between a single transmit-receive antenna
pair. Intel’s implementation of the 802.11n CSI does not include
per-subcarrier noise measurements, so we assume the noise floor is
uniform across all subcarriers to compute SNRs. This is consistent
with white noise observed on other OFDM platforms [20].

5. PACKET DELIVERY EVALUATION
In this section, we use our testbeds to experimentally evaluate

how well our model of §3 predicts packet delivery. This is the fun-
damental measure of whether the model is useful; good predictions
enable applications such as rate adaptation, transmit power control,
antenna selection, and channel selection.

5.1 Measurement setup
We first measure packet delivery for different antenna configu-

rations over a 20 MHz channel on our testbeds. The 1x1 or SISO
configuration corresponds to 802.11a, where each node has a sin-
gle transmit or receive antenna. In addition we measure configu-
rations with three receive antennas and 1, 2, or 3 spatial streams.
These 1x3, 2x3 and 3x3 MIMO configurations are only available
with 802.11n. They exploit spatial diversity and spatial multiplex-
ing to greatly increase performance.

Rate (Mbps) ∆ρpacket (dB) ∆ρeff (dB)
5–95% 25–75% 5–95% 25–75%

6.5 3.08 1.29 2.05 0.81
13.0 3.45 1.44 2.38 0.89
19.5 6.27 3.12 2.30 0.85
26.0 3.93 1.98 3.02 0.94
39.0 7.05 3.49 2.19 0.93
52.0 7.16 3.20 2.29 1.06
58.5 7.25 3.37 2.92 1.41
65.0 7.24 2.81 2.92 1.35

Average 5.68 2.59 2.51 1.03

Table 3: Width of 1x1 transition windows.

In each test, we send 1500 byte packets as constant bit-rate UDP
traffic generated by iperf at 2 Mbps for 5 seconds. We turn off
link layer retransmissions to observe the underlying packet delivery
rate, and fix the link data rate and the transmit power in each run.
Then we collect packet reception rate (PRR) statistics for all 8 rates
using 1, 2, and 3 spatial streams as we vary the power between
−10 dBm and 16 dBm in steps of 2 dB.

The receiver also records the CSI and per antenna RSSIs to mea-
sure the RF channel for each correctly received packet. Note that
CSI is measured during the preamble, so it does not depend on the
transmit rate. Similarly, 3x3 CSI gives us the channel between each
pair of transmit and receive antennas, so it also implicitly contains
1x1 CSI.

The above testing gives us ground truth data to probe variation
across 200 links, 26 dB of transmit power, four antenna configura-
tions ranging from 1x1 to 3x3, and 8 per stream rates (for 24 rates
with up to three streams). This covers all of the key variables in our
delivery model.

5.2 RSSIs and Multiple Antennas
Our model predicts packet delivery in terms of effective SNR as

described in §3. Our baseline to compare it with is RSSI-based
predictions of delivery. This is simple enough for the 1x1 case of
a single transmit and receive antenna: we convert the single RSSI
value to a packet SNR using Eq. (3), which is then mapped to packet
delivery for the transmit rate that is used.

However, there is a complication when there are three antennas
in the multi-antenna modes. There are now three RSSIs — how
should they be used? We first convert the per-antenna RSSIs to
SNRs and then sum the SNRs. This is a straightforward choice for
a single spatial stream as it corresponds to receiver processing using
MRC [8]. It is also reasonable for 2- and 3-stream MIMO because
the streams are interleaved.

5.3 Results
Transition Windows. To compare our model with RSSI, we first
analyze our 1x1 measurements to find the transition windows for
all of the links in testbed T1. We define this to be the effective SNR
or packet SNR values over which packet delivery rises from 10%
(lossy) to 90% (reliable) for any link.

Table 3 gives the width of the transition window (denoted ∆ρ)
for 1x1 rates using these SNR metrics. We show the 25–75% range
of points in the transition window as a measure of the typical link,
and the 5–95% range as a measure of most links. A good result here
is a narrow window like that measured over a wire (Figure 1(a)).

We see that the transition widths are consistently tight with our
model. Most links transition within a window of around 2 dB for
most rates. The width of the RSSI-based transition windows is typi-
cally two to three times looser, especially for the denser modulation
schemes like QAM-64 and higher code rates. This means that it is
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Figure 6: The variation of best rate with SNR over links and antenna configurations. Excepting extremely low and high SNRs, one
RSSI-based packet SNR value maps to multiple best rates for different links, while effective SNR provides a clear indicator of the
best rate for nearly all links.

easy for a less than ideal channel to degrade the reception of high
rates.2 However, while the transitions for the last four rates are in-
flated with RSSI, they remain tight with effective SNR.

The results for effective SNR are in fact about the best that can
be obtained because they are close to textbook transitions for flat-
fading channels and those measured over a wire (Figure 1(a)). A
small improvement is surely possible, but this is probably limited
by the precision of our measurement data. Our NIC gives RSSI,
AGC and noise values in dB to the nearest integer, and at most 8
bit CSI over a 24 dB range for 30 out of 56 subcarriers. With these
factors, quantization error of at least 1 dB is likely.

The larger significance of narrow transition windows is that, by
reducing them enough that they do not overlap, we are able to un-
ambiguously predict the highest rate that will work for all links
nearly all of the time. In contrast, RSSI transition window over-
lap such that for a given RSSI we have seen five different rates be
the highest rate in our testbed. We explore this next.

Rate Confusion. To understand how transition windows map to
packet delivery predictions, we analyze our measurements for the
highest supported rate (PRR≥ 90%) for each link and all NIC set-
tings. The results are shown in Figure 6, broken down by antenna
configuration. Figure 6(a) shows 1x1 rates for T1 and T2 links
2It also suggests that it would be useful for software-defined radio
experiments to tackle QAM-64 as a challenge case; most imple-
mentations have reached QAM-16 at best.

combined. Figure 6(b)–6(d) show rates for 1x3, 2x3 and 3x3 con-
figurations for T1 links; T1 is denser than T2 and supports MIMO
experiments over our NIC’s transmit power range. For each RSSI-
based SNR or effective SNR value, we find the best link (with the
fastest best rate) and the worst link (with the slowest best rate). We
plot the spread of their fastest rates in these graphs.3

Ideally, the best and worst lines would overlap completely. That
is, the highest rate for a given SNR would be the same for the best
and worst links. This rate would then be an accurate prediction for
the effective SNR or packet SNR level. Conversely, gaps between
the best and worst lines expose confusion about which rate will be
the highest rate for that SNR.

In the top two lines of the 1x1 and 3x3 cases, we see that the
RSSI-based SNR does have a large spread between the best and
worst lines. Except for extremely low and high SNRs, nearly all
SNRs have at least two and up to five different rates as suitable
choices for the best rate. That is, RSSI often poorly indicates rate.

In sharp contrast, the two effective SNR lines overlap almost all
the time, and mostly appear to be a single line. This is almost an
ideal result. Effective SNR is a clear indicator of best rate. When
there is slight separation, the spread is only between rates that use
the same modulation but different amounts of coding. These com-
binations are also close together in our wired experiments.

3Figure 6(b) does not include data for 1x3 at 6.5 Mbps, because
very few links experience loss at that rate.
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Figure 8: Power saving and performance impact of pruning excess transmit power. Pruning with Effective SNR is tight (within 0.5
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Figure 7: Effective SNR (for QPSK) versus packet SNR for flat
(left) to faded (right) links.

Interestingly, we see that RSSI-based predictions are much better
for the 1x3 and 2x3 cases, though still not as accurate as effective
SNR, particularly for the high rates. The reason is spatial diversity:
spare receive antennas gather the received signal and combine to
make the channel more frequency-flat. The effect is well-known,
though typically not observable using real 802.11 NICs. It suggests
that RSSI is a reasonable predictor for an 802.11 configuration with
significant diversity. However, observe that RSSI does not transfer
well across the antenna modes (as diversity gains and inter-stream
interference change unpredictably) which makes this less useful.
This is one reason that SISO rate adaptation schemes do not trans-
late to MIMO.

We conclude that effective SNR consistently and accurately in-
dicates the best rate for nearly all links and all configurations with-
out any per-link calibration. From now on, we use the thresholds
in these graphs to predict the working rate for any link. They
agree with the measured SNRs on a wired link (Figure 1(a)), which
strongly suggests that the effective SNR captures the fundamental
error characteristics of the link.

Finally, we note that neither effective SNR nor RSSI performs
well at the lowest modulation at low SNRs. We believe this artifact
arises from errors in the AGC values reported by the NIC, observed
by Judd et al. [10] and confirmed by our data for Intel’s hardware.

Transmit power control. The results so far show we can predict
delivery over a range of transmit powers (as well as other choices).
We now show that CSI measured at one transmit power level is
useful to predict delivery at a different power level. This is valuable
for power control applications, e.g., pruning excess power to reduce
co-channel interference [21, 25, 17].

Note that changing transmit power has a different effect (in terms
of delivery and highest rate) on real links even if they start at exactly

the same rate and SNR. Figure 7 plots the packet SNR versus effec-
tive SNR relationship for six example 1x1 links in T1 and T2. We
compute this data by scaling the CSI measured at maximum trans-
mit power over a range of power levels. The links range from near-
flat to deeply-faded. Correspondingly, they have different slopes.
On the left, packet SNR matches effective SNR for the nearly flat
link. However, for the right-most, deeply faded links, the packet
SNR decreases from 25 dB to 15 dB (10× transmit power reduc-
tion) as the effective SNR only drops by 4 dB (2.5×). This dif-
ference in how links harness power makes transmit power control
non-trivial.

To test predictions across power levels, we use them to trim ex-
cess transmit power without causing the highest rate for the link
to drop. We start with 88 1x1 links in T1 with 10 dBm (10 mW)
of transmit power, one CSI sample per link, and consider reduc-
tions in increments of 2 dB. At each reduced transmit power level,
we estimate the best supported rate on a link based on appropriate
thresholds, and continue the reduction if the original rate is sus-
tained. Once the final transmit power is determined, we look up the
link’s actual measured PRR at that power at the given rate to check
the accuracy of the predictions. Figure 8 shows the power savings
and performance degradation of four different threshold schemes.
A good result here is power savings without a loss of performance;
the absolute amount of power savings is not meaningful as it de-
pends on the testbed. The Measured (Optimal) line shows the best
that can be done. Measured PRRs at all power levels are used to
guide power control decisions. Therefore, the final delivery prob-
abilities are hardly decreased (all links have PRR>90%), yet most
links save a little power and some save a lot.

The graphs show that using effective SNR to predict how much
power to trim has a similarly good tradeoff. Impact on rate remains
limited, yet power is saved, more than 10 dB for around 10% of the
links. The gap between the Measured and the Eff SNR lines is due
to the fact the Eff SNR thresholds might be slightly conservative
for some links. To show that this trimming is tight, we also con-
sider trimming towards slightly lower thresholds (Effective SNR−
0.5 dB, solid line). This results in little additional power savings but
degrades more links so that they work partially. In comparison, the
Pkt SNR line shows the effects of using packet SNR to save power.
The savings are barely increased, but several links are degraded to
the point that some stop working altogether.

Interference. Finally, we investigate how an effective SNR-based
protocol can cope with interference. This is one of the largest poten-
tial weaknesses of this technique, because effective SNR is based
on measurements taken only during the packet preamble.
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We studied the variation of CSI measurements during interfer-
ence. We chose two nodes in testbed T2 that do not detect each
other with carrier sense and sent large packets designed to collide,
while monitoring the CSI recorded by all other receiving nodes.
We also varied the transmit power of the node designated as the
interferer from low to high to induce a large range of interfering
channels. For all but one of 20 links, the rate predicted by the ma-
jority of CSI measurements for correct packets was the same with
and without interference; the remaining link was off by a single
rate. We conclude that the mere presence of interference does not
completely invalidate effective SNR values, and thus transient in-
terference will not cause wild swings in transmit rate.

However, for continuous interference effective SNR will provide
an aggressive estimate, and will need another way to compensate.
This should be reflected in larger noise floor measurements by the
NIC,4 however our platform does not provide this information for
dropped packets. An alternative, that we have not yet explored,
might be an effective SINR metric that incorporates CSI measure-
ments from the interfering nodes to predict packet delivery.

6. APPLICATION TO RATE SELECTION
The most direct uses of packet delivery predictions are rate adap-

tion, transmit power control, and channel selection. Each of these
is a well-studied topic. As an example application, we study how
our model can inform rate adaptation. We first use trace-driven
simulation to compare against the state-of-the-art rate adaptation
schemes for 802.11a/g over a range of channels. They provide a
well-established baseline against which we can gauge our perfor-
mance. Our goal is to perform as well as the best, already near-
optimal 802.11a/g schemes on their home ground, with a method
that has the advantages of simplicity, deployability, and generality.

Next, we show that our method extends well to 802.11n (MIMO)
and so provides ongoing value. Rate adaptation is an open problem
for 802.11n. Most schemes in the literature were not designed for
MIMO systems, and none of the ones that were have been tested on
real 802.11 channels.5

6.1 Rate Selection Algorithms
We experiment with ESNR, an algorithm based on our model,

plus SampleRate [5], the de facto rate selection algorithm in use to-
day, and SoftRate [28], a research algorithm with the best published
results.

SampleRate [5] is an implicit feedback scheme that uses only
information about packet reception or loss. It maintains delivery
statistics for different rates to compute the expected airtime to send
a packet, including retries. It falls back to a lower rate when the
airtime of the chosen rate exceeds (due to losses) the airtime of a
lower rate. Standard implementations send a packet to probe 1 or
2 higher rates every 10 packets, to determine whether to switch to
higher rates.

The main weakness of SampleRate is its slow reaction to change.
If the wireless channel quickly degenerates, SampleRate will in-
cur multiple losses while it falls back through intermediate rates.6

When the channel suddenly recovers, SampleRate’s infrequent prob-
ing converges to the new highest rate slowly. Algorithms such as
4Note that OFDM does not turn interference into inflated RSSI as
do the spread spectrum modulations used in 802.11b.
5The only experimental evaluation of MIMO rate adaptation we
know of is on Hydra [12]. It uses the USRP radios for 2 MHz chan-
nels that are relatively narrowband and flat.
6The original SampleRate [5] did not reduce rate for retries, but
some implementations [10] and the version used in modern ker-
nels [24] do. This turns out to be important for good performance.

RRAA [29] aim to improve on SampleRate’s weaknesses, but as
they are less widely used we stick with SampleRate as a represen-
tative probe-based algorithm.

SampleRate is only defined for SISO links. MIMO breaks some
of its assumptions, as higher rates can work when lower ones do
not due to different antenna modes. Thus, we only compare it for
802.11a/g experiments.

SoftRate [28] is an explicit feedback scheme that uses informa-
tion gleaned during packet reception at a given rate to predict how
well different rates will work. The input to these predictions is the
bit error rate (BER) as estimated from side-information provided by
the convolutional decoder. SoftRate chooses rates based on the per-
formance curves that relate the BERs for one rate (a combination of
modulation and coding) to another. Each rate will be the best choice
only during a predictable BER range. These predictions can help
SoftRate quickly identify the best rate. SoftRate has been shown to
dominate trained SNR-based algorithms such as CHARM [10] and
we do not evaluate against those directly.

SoftRate is defined for SISO channels, like SampleRate, and its
predictions hold only for fixed transmit power and antenna modes,
so it does not extend to MIMO systems. We only compare it for
802.11a/g experiments. To cover the full SISO range, we extended
the MIT implementation of SoftRate to QAM-64 and 2/3 and 5/6
rate codes.

ESNR uses our model in a very simple way: given recent chan-
nel state information, compute the highest rate configuration that is
predicted to successfully deliver packets (PRR > 90%). It runs at
the receiver, measuring CSI on received packets and returning rate
changes to the sender along with the ACK like SoftRate. Finally,
to protect against poor choices near a rate boundary in our model,
we fall back one rate if consecutive packets must be retried and the
effective SNR level has not changed. This is a fixed rule.

Like SoftRate, our algorithm obviates the search phase. There is
no calibration of dynamic thresholds. This is not rate adaptation so
much as rate selection that changes only because it tracks the chan-
nel’s evolution. And unlike SoftRate, the predictions of our model
hold over different antenna modes. This lets us run over 802.11n
rates as easily and in the same way that we run over 802.11a/g rates.
Thus, we report results from both 802.11a/g and 802.11n runs for
our algorithm.

Optimal. We also take advantage of simulation to add upper
bounds on achievable performance. This lets us assess how well
the algorithms perform on an absolute scale. The OPT scheme has
an oracle that knows the true highest rate that can be successfully
delivered at any given time. The Previous-OPT scheme knows the
optimal rate that worked on the channel for the previous packet and
uses it for the next transmission; it just does not know the future.
Since SoftRate and ESNR use an estimate of this previous channel
state, and SampleRate infers the recent channel state, they are un-
likely to beat Previous-OPT. The gap between Previous-OPT and
OPT is also likely to be significant because of inherent wireless
channel variability.

6.2 Trace-driven Simulator
Although our ESNR algorithm runs in real time on a mobile

client with the Intel 802.11 NIC,7 we turn to simulations to com-
pare these algorithms. This is for two reasons. First, SoftRate runs
on a software-defined radio, and cannot be implemented on a cur-
7We implemented a version of ESNR that randomly probes other
antenna modes to collect CSI and that also sends effective SNR es-
timates back to the transmitter, and ran it online against SampleRate
in human-scale mobility. We found that the probing and feedback
have little penalty, and our results match the simulator: the two al-
gorithms are separated by a small (5–10%) margin.
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rently available commercial NIC. Second, we want to compare the
algorithms over varied channel conditions, from static to rapidly
changing, to assess how consistently they perform. For example,
no algorithm will beat SampleRate by a significant margin on static
channels, because it will quickly adapt to the channel. In contrast,
SoftRate performs well even when the channel is changing rapidly
due to mobility. However, it is hard to generate controllable high-
mobility experimental settings.

Trace. We collect real channel information for the simulations. A
mobile client in T1 that is moved at normal walking speed sends
short, back-to-back packets to stationary testbed nodes that record
the CSI. The CSI reflects frequency-selective fading over real, vary-
ing 20 MHz MIMO channels that is typically not observed with
more narrowband experimentation, e.g., on the USRP. Note that
CSI is estimated during the preamble of the packet transmission,
independent of the modulation and coding of the payload. There-
fore, the mobile transmitter can quickly cycle through all antenna
configurations (1x3, 2x3 and 3x3) by sending a single short UDP
packet at the lowest rate for each configuration. This enables fine
grained sampling of the channel every 650µs. The following re-
sults are derived from a trace with approximately 85,000 channel
measurements taken over 55 seconds, spanning varying RF chan-
nels that range from the best 3-stream rates to SISO speeds.

Simulator. We feed this trace to a custom 802.11a/g/n simulator
written in a combination of MATLAB and the MIT C++ GNU Ra-
dio code. The simulator implements packet reception as shown
in Figure 3, including demodulation for BPSK through QAM-64,
deinterleaving, and convolutional decoding with soft inputs and soft
outputs. The measured CSI is interpolated to 56 carriers and serves
as the ground truth for the channel, and packets are correctly re-
ceived when there are no bit errors, or are lost. SampleRate, Soft-
Rate, and ESNR are implemented as described previously. To en-
sure that ESNR is not given the unrealistic advantage of ground
truth CSI, we corrupt the CSI at the level of ADC quantization,
which typically induces an error of ±1.5 dB in the output effective
SNRs. SoftRate estimates the BER directly during decoding.

To vary mobility, we replay the trace at different speeds. For ex-
ample, 4× mobility gives ESNR the CSI from every fourth trace
record. However, packet reception still uses all trace records. For
a packet to be correctly received in the accelerated trace, it must
be received over the intermediate records. We require correct re-
ception at ≥80% of the records to allow for coding. This models
a varying channel that we can only sample for CSI periodically, as
happens when CSI is measured during the packet preamble. Soft-
Rate operates using the 80th percentile soft estimate from the range.

We aim to evaluate the ability of these algorithms to respond to
changing channel conditions. Thus, our primary metric is the de-
livered PHY layer rate per trace index. Higher-layer factors such as
MAC backoff, link-layer packet aggregation, and TCP reactions to
loss, will affect how this rate translates to throughput.

6.3 Rate Adaptation Results
SISO Performance. We first examine the performance of ESNR
for SISO rates. Figure 9 shows the rate over time for ESNR and
OPT over our trace. The performance metric is the average rate
over an interval because each algorithm gets an opportunity to send
a packet at the same point in the trace. The rate is averaged over a
window of 100 packets to smooth the data for readability. ESNR
performs excellently. It is below OPT but consistently overlaps
Previous-OPT, which is an upper bound for schemes that track the
channel and do not predict the future. ESNR is accurate on 75% of
packets, with the expected 10% target over-selection.

Figure 10 shows the effects of mobility on SISO channels. Each
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Figure 9: OPT and ESNR SISO performance in human-speed
mobility.
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Figure 10: OPT and ESNR SISO performance in fast mobile
channels.

line plots the average rate as a function of the speed at which we
play the trace. We cover a large range of speeds to show trends,
in doubling increments from 1× (walking speed,≈3 mph) to 128×
(>300 mph). All schemes fall off with increased speed, and the gap
between OPT and Previous-OPT grows from 20% at human speeds
to 1/3 at the fastest speeds. However, even in these mobile channels,
ESNR holds up very well and tracks Previous-OPT within 10%.
Note that packet SNR was observed to fare quite poorly [28] in
mobile channels, but since effective SNR reflects actual link quality
its estimates are more accurate (§5) and stable (2–3× less variance).

SISO Comparison. Next, we compare ESNR with SampleRate
and SoftRate in Figure 11 and Figure 12. While it is hard to sep-
arate the lines on the graph, at 1× speed, ESNR slightly outper-
forms SampleRate which slightly outperforms SoftRate. These re-
sults surprised us: SampleRate performs better than we expected,
and SoftRate performs less well.

SampleRate’s lagging channel estimate makes it degrade fastest
with increasing mobility. However, it maintains a 10–25% mar-
gin with ESNR, still performing well even with large speedups. In
deeper analysis, we discovered that dropping rate on retry is an im-
portant factor that gives it short-term adaptability. Without this rate
fallback (the “SampleRate fixed” line), it loses 25–50% of its per-
formance.

SoftRate has among the slowest falloff with mobility speedup
because it directly and accurately measures the channel, and per-
forms the best at maximum speed. However, at slow speeds it is
slightly slower on average than SampleRate, though it easily beats
a SampleRate without fallback that was the basis for earlier com-
parisons.8 We do not believe this gap is fundamental, as SoftRate’s
post-decoding BER estimate should match or even slightly improve
on ESNR. Further tuning will likely improve SoftRate. Note that
the task for SoftRate is harder in our setting than in the original

8M. Vutukuru, personal communication, and code inspection.
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Figure 11: ESNR, SampleRate, and SoftRate SISO perfor-
mance in human-speed mobility.
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Figure 12: OPT, ESNR, SampleRate, and SoftRate SISO per-
formance in fast mobile channels.

evaluation. We have added QAM-64 and other coding rates, so it
must now chose among 8 SISO rates.

Finally, while the performance differences between schemes are
significant, they are always less than a factor of two (ignoring OPT).
To put this in perspective, note that other evaluations have reported
throughput based on TCP traffic, which will magnify performance
gaps by reacting to packet loss.

MIMO Performance. To show the generality of our model, Fig-
ures 13 and 14 show the performance of an unmodified ESNR al-
gorithm running for 802.11n MIMO rates. These results do not in-
clude SampleRate or SoftRate as they are SISO schemes. Instead,
we use OPT as our benchmark. These figures are in the same form
as for SISO, except the range of rates has grown by a factor of 3 to
support up to 195 Mbps.

The trends in these graphs are similar to those in the SISO graphs:
at human mobility speeds, ESNR tracks Previous-OPT and delivers
excellent performance, with 80% accuracy and 10% over-selection.
In faster mobile channels, there is a slightly larger gap with Previous-
OPT for MIMO than for SISO, likely because ESNR must now
choose between 24 rates instead of 8. It is more likely to choose
rates under the highest rate that would have worked.

Finally, note that with 3 antennas there are only four two- and
three-stream rates over 117 Mbps (130, 156, 175.5 and 195 Mbps).
The visible gap between indices 25–50 in Figure 13 reflects only
the difference between 1 or 2 rates of potentially different antenna
modes. Taken together, these results imply that ESNR’s MIMO
performance is highly competitive.

Enhancements. One strength of our model is that it can accommo-
date choices other than rates. This lets us add other functionality to
ESNR without increasing complexity. We demonstrated an exam-
ple enhancement to trim excess transmit power in §5.

A second enhancement is to select the best transmit antenna when
there are spare antennas. An 802.11n AP can select antennas to use
to send packets to a legacy 802.11a/g client (plus use all antennas
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Figure 13: OPT and ESNR MIMO performance in human-
speed mobility.
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Figure 14: OPT and ESNR MIMO performance in faster mo-
bile channels.

to receive packets). With three antennas to choose from, the ex-
pected gain in SNR is a little over 2.5 dB [8]. This is often enough
to advance to a higher rate.

We ran a version of SISO ESNR that chose the antenna with the
highest ESNR for the next transmission. This gave a gain in the av-
erage rate of 5%. For comparison, OPT achieved a 10% increase by
always knowing which antenna was best. No other rate adaptation
schemes directly support these enhancements.

7. RELATED WORK
Understanding real 802.11 wireless channels. A number of stud-
ies investigate the performance characteristics of 802.11. Initial
studies of 802.11b [3, 22] found RSSI to be a weak predictor of
packet delivery that improved when receivers were calibrated for
thermal conditions and manufacturing variability. Today’s NICs
have intense calibration procedures that mostly eliminate these is-
sues. However, the variation across links with 802.11a/g/n OFDM
comes from frequency-selective fading [13, 27], which does not af-
fect spread-spectrum modulations in 802.11b.

Theoretical analysis. Much theoretical work on OFDM with con-
volutional coding starts with effective BER or SNR [18] and adds
simulated faded channels to build closed-form expressions for er-
ror rates under coding [4, 19, 26]. Effective SNR has also been
extended to MIMO-OFDM [15, 16]. Our model is related, but sim-
pler: we eschew simulating complex, implementation-dependent
coding effects in favor of using fixed, per-rate thresholds. We con-
vert CSI to effective SNR in a way that better matches the equal
modulation and power allocation used by 802.11n and offer a better
API for practical use. Most importantly, we experimentally evalu-
ate our model for 802.11 NICs and real RF channels; we are not
aware of other work on 802.11 that uses effective SNR measures
outside of simulation or analysis.

Rate adaptation. Many rate adaptation algorithms have been pro-
posed that use packet delivery statistics [5, 29], RSSI-based packet
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SNR [6, 10], or symbol-level details of packet reception [23, 28] to
adapt to varying channel conditions. Some proposals require cus-
tom hardware [6] and may drastically change the fundamentals of
the communication [20]. These methods do not extend to 802.11n
and do not address related factors, e.g., transmit power.

Compared to SoftRate’s [28] use of BER estimates, our effec-
tive SNR metric is more general. With a single CSI measurement,
we can extrapolate performance in a wide space of rates, spatial
streams, antenna selections, channel widths, and transmit power
levels. We have also shown that effective SNR can be implemented
on commodity NICs and evaluated it over real wireless channels
with mobile and fixed clients. Like RRAA [29] and SoftRate, ef-
fective SNR helps to distinguish collisions from channel induced
packet loss; with accurate predictions of interference-free packet
delivery there is no need to adapt rate in response to loss.

Finally, effective SNR could inform and improve schemes that
combine transmission with more efficient channel-dependent cod-
ing [14] or partially-correct ARQ schemes [9]. Our deeper under-
standing of fading should also aid attempts to use the faster OFDM
rates in challenging outdoor mobile environments [7].

Transmit power control. Existing proposals for transmit power
control require complex probing and adaptation mechanisms [17,
21, 25]. Our example in §5 suggests that, with a good predictive
model, we can directly and confidently select a reduced transmit
power without degrading link performance.

8. CONCLUSION
Wireless links are easy to understand in theory, but difficult to

operate in practice, thus search is used to find the best rates, power
levels, or other parameter of interest. We have presented a practi-
cal 802.11 packet delivery model that greatly simplifies this situa-
tion. Our model takes as input the RF channel (measured as 802.11
Channel State Information) and predicts whether the link will de-
liver packets for a wide range of NIC configurations. It uses the
notion of effective SNR to handle OFDM over faded links, works
for MIMO configurations, and needs no calibration of target links.

We evaluated our model experimentally with Intel 802.11a/g/n
NICs. We show that, for the first time, measurements taken by
commodity NICs can accurately predict whether links will work
over a wide range of rates, transmit power, spatial streams, and an-
tennas settings that have not previously been tested. In contrast,
predictions based on RSSI often confuse from two to five rates as
the potential best rate to use.

Our model is simple, involving only computation on channel
measurements. It is easy to deploy, working with measurements
from 802.11n NICs. And it is general, working for 802.11n (MIMO)
systems as well as 802.11a/g (SISO) ones. As one application, we
use it to predict the highest transmit rate for a link. Simulations
driven by real channel measurements show that our scheme is as
good as the best 802.11a/g rate adaptation schemes, and extends
good performance to 802.11n. We hope our model will prove use-
ful for many tasks ranging from antenna and channel selection to
rate and transmit power control.
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