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Abstract—Community-detection is a powerful approach to un-
cover important structures in large networks. Since networks of-
ten describe flow of some entity, flow-based community-detection
methods are particularly interesting. One such algorithm is called
Infomap, which optimizes the objective function known as the
map equation. While Infomap is known to be an effective algo-
rithm, its serial implementation cannot take advantage of multi-
core processing in modern computers. In this paper, we propose a
novel parallel generalization of Infomap called RelaxMap. This al-
gorithm relaxes concurrency assumptions to avoid lock overhead,
achieving 70% parallel efficiency in shared-memory multicore
experiments while exhibiting similar convergence properties and
finding similar community structures as the serial algorithm. We
evaluate our approach on a variety of real graph datasets as well
as synthetic graphs produced by a popular graph generator used
for benchmarking community detection algorithms. We describe
the algorithm, the experiments, and some emerging research
directions in high-performance community detection on massive
graphs.

I. INTRODUCTION

Community detection in large graphs [1]–[3] is emerging
as a first-class technique in a number of application domains,
for example: finding functional similarity in biological net-
works [4], [5], identifying collaboration communities in research
networks [2], and understanding the macro-structure of science
through bibliometrics [6].

Community detection methods operate under the intuition
that intra-community connections are more common than inter-
community connections. Modularity (Q) has been a popular
formulation of the problem [7]: Given a partitioning of a graph,
a high modularity score indicates that the number of partition-
internal edges is higher than would be expected by chance.
Modularity is easy to compute and widely applicable. However,
modularity optimization methods suffer from a “resolution limit”
that depends on the size and connectivity of the network [8].
Further, Guimerà, Sales-Pardo, and Amaral showed that random
graphs have high-modularity subsets, suggesting that false
structure may be found in practice [9]. Spectral and min-
cut techniques have been shown to be effective at finding
structure at all scales, but exhibit a bias such that aggressive
maximization of certain community score functions can destroy
intuitive notions of cluster quality [10].

In response to these limitations, Rosvall et al. proposed
a flow-based and information-theoretic formulation of the

community detection problem known as the map equation [11].
Flow in this context is modeled as a random walk through the
graph as in the PageRank algorithm [12]. A graph partitioning
is scored by finding a compressed modular representation of
this flow, with high within-module flow and low between-
modular flow [11]. This method has been shown to capture
some intuitive notions of community and, when optimized with
the search algorithm Infomap [13], to perform very well on
real networks and on synthetic benchmarks [14].

Unfortunately, current implementations of Infomap are
sequential and cannot scale to handle the graphs with millions
and billions of edges that are becoming commonplace. The
current sequential algorithm requires 45 minutes to detect
communities in a graph with around 5 million vertices and
70 million edges (see Section IV)—a relatively long runtime
for a relatively small graph, compared to web-scale graphs
with billions of edges. To apply Infomap more broadly requires
the ability to optimize the map equation in parallel. Our work
represents the first such algorithm.

In this paper, we present RelaxMap, a parallel community
detection algorithm to optimize the map equation. RelaxMap
achieves parallelism over the inherently sequential Infomap by
relaxing serial consistency constraints to significantly reduce
lock contention, applying global locks only when applying
updates to shared state. In particular, a) decisions to move
vertices between modules are made in parallel without locking
for checking consistency, but b) the algorithm acquires a global
lock before applying each move to ensure that the shared
module status and the objective function values are updated
consistently. We show that these techniques offer significantly
improved performance on modern multicore machines while
achieving as good or better quality scores and similar conver-
gence rates.

We offer the following contributions:

• We describe a novel parallel algorithm, called Re-
laxMap, which parallelizes the optimization of flow-
compression for community detection. To the best of
our knowledge, RelaxMap is the first parallel algorithm
for flow-based community detection.

• Using synthetic benchmark graphs [14] and a variety
of real graphs (where ground truth is unknown), we
show that RelaxMap achieves 70% parallel efficiency



up to 12 cores while producing graph clusterings that
match the quality of those produced by Infomap.

Section II summarizes the mathematics behind the map
equation and the core Infomap algorithm. We describe Re-
laxMap in Section III, and we evaluate it on both synthetic
and real graph datasets in Section IV. Section V contains a
discussion of the related work, followed by our conclusions
and proposals for future research in Section VI.

II. THE MAP EQUATION

Here, we briefly summarize the principles behind the map
equation, a flow-based, information-theoretic objective function
for evaluating the quality of a graph clustering—an assignment
of vertices into modules, or communities. We then describe
the core Infomap algorithm for optimizing the map equation
over possible clusterings. Infomap is designed to cluster both
weighted and directed networks, which arise in many important
applications, and has been shown to be one of the most effective
clustering techniques in objective third party benchmarks [14],
[15]. In the next section, we will show how RelaxMap can
optimize the map equation in a parallel fashion.

The term “map” in map equation comes from the notion that
clustering of real-world networks with respect to flow resembles
cartography of traffic infrastructure for better navigation.
Optimizing the map equation over possible module assignments
identifies modules in which flow stays for a relatively long
time, much like geographical maps identify cities as regions in
which traffic stays for a relative long time. Flow can refer to
real flow of, for example, passengers moving between airports,
or flow of random walkers guided by the nodes and links
of the network as a proxy for the real flow. But given the
network structure, what is the optimal number of modules and
the optimal assignment of nodes into those modules?

The map equation answers these questions using the
fundamental principles of information theory. All regularities
in data can be used to compress the data, such that the
degree of compression becomes a measure for the success
in finding regularities in the data. The map equation takes
advantage of this minimum description principle by measuring
the description length of a random walker (or of real flow)
on a network with a modular codebook structure [11]. Each
one of |M| modular codebooks describes movements between
nodes assigned to the corresponding module. With Pm for the
probability distribution of node visit rates pα for α ∈ m in
and exit rate qmy out of module codebook m, the average
description length is given by the entropy H(Pm) according
to Shannon’s source coding theorem [16], [17]. The frequency
of use of module codebook m is pm� = qmy +

∑
α∈m pα, the

probability of staying in module m plus the exit rate. Moreover,
a single index codebook describes movements between the
module codebooks. With Q for the probability distribution
of module entering rates qmx, the average description length
is given by the entropy H(Q). The frequency of use of the
index codebook is qx =

∑
m∈M qmx. Taken together, the map

equation (Eq. 1) measures the average description length L
given modular assignments M

L(M) = qxH(Q) +
∑
m∈M

pm�H(Pm). (1)

Algorithm 1 Pseudo code for the serial Infomap algorithm [13]

1: input: Network G = (V,E), where V = set of N vertices,
E = set of edges. Per-iteration quality improvement
threshold τ

2: Run PageRank to calculate steady state probability for each
vertex.

3: M = {{vi} | vi ∈ V }
4: L = L(M) in Eq. 1

5: repeat
6: Lprev = L
7: R = random sequence of integers 1 to N
8: for i = 0; i < N ; i++ do
9: mnew = bestNewModule(M, vR[i]);

10: Move vR[i] to mnew module, and update M and L.
11: end for
12: until Lprev − L < τ

13: return M

Minimizing the map equation over all possible module as-
signments gives the optimal modular structure for describing
movements on the network, and therefore reveals important
structures with respect to the dynamics on the network [11].

Algorithm 1 illustrates the core algorithm of the fast
stochastic and recursive search algorithm implemented in
Infomap [13]. The algorithm proceeds in two phases:

• Phase 1: (line 2) The visit probability (rank) of each
vertex is computed in terms of the network flow.

• Phase 2: (lines 5- 12) The space of possible modular-
izations is greedily searched. The initial modules are
singletons — one module per vertex. For each vertex
v, the call bestNewModule(M, v) (line 9) checks
neighboring modules and greedily selects the one that
reduces the minimum description length (MDL) L by
the largest amount. The algorithm stops when the
change in MDL score in each iteration (Lprev − L) is
less than a threshold τ .

In searching procedure for the best new module of a vertex
v (line 9), the algorithm calculates the in-flow and out-flow
between the vertex v and its neighbor modules. Finally, the
improvement in the MDL for each candidate move can be
calculated from the measured in-/out-flow information. The
algorithm assigns the vertex v to whichever new module
maximizes the MDL improvement. Details of the map equation
and the Infomap community detection algorithm are available
in the original paper [11] and a dynamic visualization of the
technique is available online1.

III. PARALLELIZING FLOW-BASED COMMUNITY
DETECTION

To parallelize Algorithm 1, we observe that Phase 1 of that
algorithm is the same as PageRank [12] for which there are
many parallel and distributed implementations [18]–[21]. The
remainder of this section describes how to parallelize Phase 2.

1http://www.mapequation.org



Algorithm 2 Pseudo code for a naïve lock-free algorithm

1: for (in Parallel) i = 0; i < N ; i++ do
2: Mnew[R[i]] = bestNewModule(M, vR[i]);
3: end for
4: M = Mnew, L = L(Mnew)
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Fig. 1: The map equation values with respect to the iteration
number of the naïve lock-free parallel scheme.

To compute the same result as the sequential algorithm in
parallel, each thread attempting to move a vertex must acquire
a lock on the module to which that vertex belongs as well as
locks on all neighboring vertices (including itself) and modules.
It is well-known that the lock contention and the corresponding
loss of parallel efficiency is a problem for the performance of
parallel algorithms [22], and we focused on an approach that
minimally uses locks without loss of the output quality much.

A. The Parallel Algorithm

We can design a naïve lock-free scheme by checking each
vertex independently in parallel and removing the necessity of
interactions between neighboring vertices. The naïve lock-free
algorithm runs steps 8 through 11 of Algorithm 1 for each
vertex in separate threads, and finds new modules for vertices
with respect to the module assignment of the previous iteration
Mt−1. This algorithm is summarized in Algorithm 2. In this
scheme, each candidate move is run independently since the
previous module assignment for all vertices is already fixed, so
the algorithm does not need to use any synchronization to make
decisions for several vertices in parallel. This simple parallel
algorithm can be implemented by adding a new array for
holding current movement decision and updating new module
decision and corresponding values at the end.

This approach will achieve perfect parallelism for the most
expensive part of this application, from line 8 to line 11
in Algorithm 1, which has complexity O(E). The update at
line 10 in Algorithm 1 now needs to be run after all parallel
moves complete since the inner loop, which is lock-free, runs in
parallel based on the results of the previous iteration, and each
thread stores the moves in a new array. Therefore, it requires
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Fig. 2: An example of the cyclical movement in the naïve
lock-free parallel algorithm; 4-vertex graphs running in 2-way
parallelism.

Algorithm 3 The core-algorithm of the RelaxMap

1: for (in Parallel) i = 0; i < N ; i++ do
2: mnew = bestNewModule(M, vR[i]);

3: acquire a lock for the updates.
4: Move vR[i] to mnew module, and update M and L.
5: release lock.
6: end for

a procedure to update status values for each module and the
new MDL at the end of each iteration (Algorithm 2).

The naïve method described is not competitive with the
sequential method, however, as seen in Figure 1. To see why,
consider the simple 4-vertex network in Figure 2. In the initial
stage, each vertex is assigned to its own module, which we
write as a ∈ A, . . . , d ∈ D, where a, . . . , d represent vertex
IDs and A, . . . ,D are module IDs. One thread moves a to
B, while an independent thread moves b to A, based on the
network flow and the module information at the previous
iteration (here initial stage). The two moves offset each other,
causing the algorithm to make cyclical movements and converge
prematurely (Figure 1).

To improve on the naïve method, we propose an algorithm
RelaxMap based on the assumption that, in general, real
network data is sparse, so a movement of a single vertex will
typically only affect a small subset of the graph. As a result, if
we consider a small number of random vertices concurrently,
they are unlikely to influence each other, and the problems
with the naïve method will be minimized.

In RelaxMap, each of p threads examines a vertex inde-
pendently, then acquires a lock to apply the winning move
and update the module information. When considering the
p vertices, the move decisions are made with stale module
information from the previous parallel round. In addition, the
RelaxMap parallel algorithm avoids the cyclical-movement
problem, shown in Figure 2. To see why, consider the case
where one thread p1 examines a and c and a different thread p2
examines b and d as in Figure 2. Say two threads worked on a
and d concurrently, deciding to move a to B and d to C. Then,
as the two threads begin examining c and b respectively, they
have access to the current module information; that a, b ∈ B
and c, d ∈ C. So thread p2 would decide to keep b in B since
it knows a is also in B, and no cyclical movement occurs.

There is still some possibility of problem: the two threads
could examine a and b at first concurrently, moving a to B
and b to A, but the probability of this case will be very low



TABLE I: Network datasets used for evaluating parallel RelaxMap algorithms.

Dataset Number of vertices (|V |) Number of edges (|E|) Avg. degree (2× |E|/|V |) Max degree

directNet-1k (Synth.) 1,000 19,849 39.70 69
directNet-5k (Synth.) 5,000 98,313 39.33 69
directNet-10k (Synth.) 10,000 196,414 39.29 69

web-BerkStan 685,230 7,600,595 22.18 84290
web-NotreDame 325,729 1,497,134 9.19 10721
web-Stanford 281,903 2,312,497 16.41 38626

soc-LiveJournal1 4,847,571 68,993,773 28.47 22887
soc-Pokec 1,632,803 30,622,564 37.51 20518

wiki-Talk 2,394,385 5,021,410 4.19 100032

if the number of vertices is large. And, even if some cyclical
movements happen during one iteration, they will be fixed at
later iterations with high probability if the MDL decreases
enough to continue. For instance, among N vertices, there
are two strongly connected vertices. If we run p-way parallel
RelaxMap (p << N in general), the probability that those
two vertices are examined concurrently is (p− 1)/N ≈ p/N .
If the algorithm stops after t iterations, then the probability
that those two vertices executed at the same time through all
the t iterations is (p/N)t because the algorithm searches new
modules for vertices in random order at each iteration. The
two vertices will not be run concurrently at least once among t
iterations in 1− (p/N)t ≈ 1 probability. Therefore, we argue
that the cyclical movement problem will not be an issue in
practice. In worst case, such as p ≥ N and each vertex takes
the same amount of time for finding a new module, all N
nodes examined at the same time and this algorithm would
still work as same as the naïve method, at least.

The main difference between the naïve lock-free algorithm
and the RelaxMap is the following: RelaxMap considers batches
of p vertices concurrently, while the naïve method considers
batches of N vertices concurrently. Since p << N , the
probability that two or more of the p vertices are interdependent
is low, and the algorithm can converge almost as quickly as
the serial verison.

The RelaxMap algorithm is described in Algorithm 3. One
specific feature of the RelaxMap (and the Infomap) algorithm
is that the MDL (L) value and the statistics of modules (i.e.
exit-rates (qmy) and sum of the visit-rates (

∑
α∈m pα) for

each module m) are always correct with respect to the current
module assignment for the consistent and efficient calculation
of L and correct algorithmic procedure. For achieving the
correctness of those values, we use a global lock in lines 3
and 5 of Algorithm 3. We tested RelaxMap without acquiring
the global lock in lines 3 and 5 of Algorithm 3 to see how
much it affects the algorithm. This approach was ineffective,
for two reasons. First, the inconsistency caused the algorithm to
converge very slowly, in some cases slower than the sequential
algorithm. Second, the incorrect module information results in
incorrect counting for active module numbers, which causes
race conditions and subsequent memory faults.

IV. EXPERIMENTAL ANALYSIS

We study RelaxMap experimentally to answer the following
two questions: First, does RelaxMap produce clusterings that
match the quality of state of the art flow-based clustering
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Fig. 3: The average normalized mutual information (NMI) as
a function of the mixing parameter comparing Infomap and
RelaxMap for the directNet-5k synthetic dataset. This implies
that the RelaxMap generates outputs that are very similar to
the outputs of the Infomap algorithm.

(Infomap) despite RelaxMap’s relaxed consistency constraints?
We study both synthetic graphs, for which ground truth is
available, and real graph datasets (Section IV-B). Second, does
RelaxMap significantly improve performance over the serial
algorithm? We evaluate performance over the same graph
datasets using two different machines and up to 12 cores
(Section IV-C). Our results in this section answer both questions
in the affirmative: communities identified by RelaxMap match
the quality of the state of the art, and RelaxMap achieves 70%
parallel efficiency in the machines tested.

A. Experimental Setup

Algorithms. We compare RelaxMap against Infomap, the state
of the art serial algorithm to optimize the map equation [11].
We used the open-source implementation of Infomap from Ros-
vall et al. (www.mapequation.org). We implemented RelaxMap
using OpenMP [23] for shared memory parallel environments,
and ran RelaxMap with up to p concurrent threads, where p is
the number of cores on the test machine.

Datasets. We used three different synthetic graphs from a stan-
dard clustering benchmark network generator, directNet [14] to
evaluate clustering when ground truth communities are available.
We follow the parameters given by Lancichinetti et al. [14,
Section VI-A] to generate graphs of 1000, 5000, and 10000
vertices with “small” communities between 10 and 50 vertices
each. We also used six real network datasets from the Stanford
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Fig. 4: The output quality comparison between the Infomap and RelaxMap algorithm (1-way and 8-way parallelism) with six
real-world datasets in Table I. In each plot, the x-axis represents three different algorithms and the y-axis is the MDL score. The
output qualities of the RelaxMap-1 and RelaxMap-8 are similar to the output quality of the Infomap with all the tested real
datasets except soc-Pokec dataset.

Network Analysis Project (SNAP) [24]. You can find a summary
of salient properties of the datasets in Table I, and detailed
information on the SNAP website [24].

Test machines. We use two different multicore computers
to perform our parallel, shared-memory experiments with
RelaxMap. One 8-core machine, Machine-I, has two Intel Xeon
X5355 quad-core processors (2.66 GHz, 8 MB L2 Cache) and
16 GB of main memory. The 12-core machine, Machine-II, has
two six-core Intel Xeon E5-2430L processors (2.00 GHz, 15
MB Intel Smart Cache) and 64 GB of main memory.

Randomized trials. Except where noted otherwise, all results
are based on 10 experimental runs with different random seeds.

B. Clustering Quality Analysis

We first seek to understand whether RelaxMap finds good
clusterings even though it uses a relaxed consistency model. We
begin with a standard network benchmark, in which synthetic
graphs with known communities are constructed randomly
according to a mixing parameter that describes how likely
inter-community edges are present relative to inter-community
edges [14]. Given ground truth communities, the standard score
for a clustering is its normalized mutual information (NMI) [25],

which equals 1 if it produces the exact same communities as
ground truth, and 0 if the two are completely unrelated. Infomap
was determined to be the best-performing algorithm in an
objective benchmark study [14]; we do not want RelaxMap to
compromise on this excellent quality.

Figure 3 shows the NMI of clusterings produced by
Infomap, a serial version of RelaxMap that runs with only one
thread (RelaxMap-1), and RelaxMap running with 8 threads
(RelaxMap-8), over 100 runs for graphs generated with varying
mixing parameter. The parallel and serial algorithms achieve
the same results: RelaxMap and Infomap find clusterings of
equivalent NMI, and are able to identify the ground truth
communities with mixing parameter below 0.8. Results are
shown for graphs with 5000 nodes, but were identical for other
sizes: We conclude that clusterings identified by RelaxMap in
parallel are as good as those found by the sequential Infomap
algorithm.

In addition to the comparison of the output quality of
synthetic datasets, we investigated the output quality of the
real-world datasets, as well. Since there is no ground truth
communities for the real-world datasets, there is no direct
metric for the quality of the communiteis, such as NMI value.
However, we found that minimizing MDL value is correlated
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Fig. 5: The MDL values with respect to the elapsed time for the RelaxMap algorithm compared to the Infomap algorithm with
(a) web-BerkStan and (b) web-Stanford datasets. Each point in these plots represents the corresponding MDL and time at each
iteration for an experiment.

to maximizing corresponding NMI value from synthetic dataset
results, so we assume that the less MDL means the better quality
on real datasets for which no ground truth exists. Figure 4
compares final output qualities of the RelaxMap algorithm and
the Infomap algorithm in terms of the final MDL code length
for six real-world datasets in Table I. In Figure 4, each point
means an average MDL code length of an experiment and
each error-bar represents the minimum and maximum values
of the experiment. As illustrated in Figure 4, the quality of the
outputs from the RelaxMap algorithm are mostly matched to
the quality of the outputs from the Infomap algorithm.

In Figure 4, the result for soc-Pokec dataset is different
with other results. Although the absolute quality difference in
average is negligible (about 0.005), it shows that the RelaxMap
algorithm does not capture the same MDL in soc-Pokec dataset
case. Both 1-way parallel (RelaxMap-1) and 8-way parallel
(RelaxMap-8) running results from the RelaxMap algorithm
are very similar to each other as shown in Figure 4-(e). Since
1-way parallel RelaxMap is logically the same algorithm with
the Infomap algorithm, the main reason for this result is not
the consistency relaxation feature of the RelaxMap.

Although the core algorithm of the 1-way RelaxMap is
logically identical to the Infomap, how to implement those in
real programming languages could be slightly different. We
have not compared in detail our RelaxMap implementation
with the Infomap implementation yet. However, we found
that the number of sub-modules generated by the 1-way
RelaxMap is larger than by the Infomap out of the similar
number of intermediate modules. This implies that the detailed
implementations of how to generate sub-modules for both
algorithms are different each other, although the concept of
generating sub-modules from each module (a.k.a community)
is identical. After sub-module finding procedure is done, the
RelaxMap-1 experiment and the sequential Infomap algorithm
start showing slightly different convergence behaviors in each
iteration for the soc-Pokec dataset, unlikely other datasets

in Table I, which results in different output quality.

C. Parallel Performance Analysis

In Section IV-B, we discuss the output quality of the pro-
posed parallel algorithm compared to the sequential algorithm.
In this section, we would like to analyze parallel performance
of the RelaxMap algorithm; 1) how quickly it can be done in
parallel, and 2) how efficient it is.

First, we investigate how fast RelaxMap converges to a
good clustering. Figure 5 shows the MDL values per unit
of elapsed time where each algorithm uses the same random
seed. As shown in Figure 5, RelaxMap converges in the same
number of iterations as Infomap for both the web-BerkStan
and web-Stanford datasets. The sequential version of RelaxMap
(RelaxMap-1) exhibited the same performance as Infomap, and
the 8-way parallel RelaxMap (RelaxMap-8) is about 4-times
faster.

In fact, the proposed parallel algorithm and the original
sequential algorithm show the same convergence pattern of the
MDL improvement with respect to the number of iteration as
in Figure 5 with all the test datasets in Table I. Based on Fig-
ure 5 and our test results, we conclude that RelaxMap provides
a compatible convergence ratio to Infomap, though it breaks
the original algorithm’s serial consistency property by lock-
free parallel design during decision making. This convergence
ratio result implies that our assumptions for applying lock-free
mechanism to the proposed parallel algorithm are sensible.

The average, minimum, and maximum running times of
Infomap, and 1-way and 8-way parallel RelaxMap with all real-
world test datasets on Machine-I are in Table II. These running
times are corresponding to the experiments of Figure 4. Infomap
and 1-way parallel RelaxMap experiments show similar running
times, and 8-way parallel RelaxMap is typically about 4 to 5
times faster than the corresponding sequential ones.
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Fig. 6: Parallel efficiency of the RelaxMap algorithm on (a) Machine-I and (b) Machine-II with tested datasets in Table I.

TABLE II: Running times for Infomap and 1-way and 8-way
parallel RelaxMap with various datasets on Machine-I.

Dataset Algorithm Average Minimum Maximum
Runtime (s) Runtime (s) Runtime (s)

web-Stanford Infomap 32.6 32.1 37.7
RelaxMap-1 30.5 30.1 31.4
RelaxMap-8 6.9 6.7 7.0

web-NotreDame Infomap 19.4 19.1 20.1
RelaxMap-1 19.5 18.9 20.1
RelaxMap-8 5.5 5.2 5.7

web-BerkStan Infomap 79.4 76.6 86.5
RelaxMap-1 81.2 78.8 83.4
RelaxMap-8 17.9 17.1 18.4

soc-Pokec Infomap 1127.4 1045.5 1210.4
RelaxMap-1 1266.2 1225.0 1317.1
RelaxMap-8 246.2 237.0 260.0

soc-LiveJournal1 Infomap 2653.7 2610.4 2688.3
RelaxMap-1 1972.4 1949.4 1999.7
RelaxMap-8 484.7 473.3 495.0

wiki-Talk Infomap 258.8 162.1 380.1
RelaxMap-1 236.6 178.1 316.8
RelaxMap-8 89.8 72.8 102.4

Figure 6 illustrates the parallel efficiency of the RelaxMap
algorithm on (a) Machine-I and (b) Machine-II, correspondingly.
In Figure 6, except lower average degree datasets, most of the
test cases show from 50% to 70% parallel efficiency in 8-way
parallelism on both test environments. This offers a significant
improvement over the state of the art.

Although the wiki-Talk dataset is larger than the web-
Stanford dataset in terms of the number of vertices and edges
in Table I, the parallel efficiency of the RelaxMap algorithm
with the wiki-Talk dataset is much lower than the web-Stanford
dataset in Figure 6. The reason is from the average degree of
both datasets. RelaxMap runs in parallel per each vertex of
the for-loop in Algorithm 3, and the workload of each vertex
is highly correlated to the degree of the vertex since each
neighbor must be evaluated. As shown in Table I, the average
degree of the web-Stanford dataset is much larger than that

of the wiki-Talk dataset. We find that the overall efficiency is
generally correlated with the average degree, by comparing
Figure 6 with Table I.

V. RELATED WORK

The community detection problem for a given network (or
graph) is a well-known and challenging problem for network
structure analysis study. One of the most well-known metrics
for the community detection problem is the modularity [7],
and the modularity maximization method [26] is one of the
mostly used methods for the problem. Riedy et al. [27], [28]
worked on parallel modularity maximization algorithm under
shared-memory environments, like a server with several multi-
core processors or Cray-XMT systems, and they modified the
original algorithm to achieve better parallel performance.

Rather than the modularity metric, Zhang et al. [29]
proposed another metric for community detection, called
propinquity, and provided a parallel algorithm for community
detection based on the propinquity metric. By utilizing an
incremental design for the propinquity calculation, which avoids
unnecessary recalculation of the propinquity values per each
iteration, they achieved better efficiency in parallel.

Niu et al. suggested an interesting lock-free scheme for
parallel stochastic gradient descent (SGD) algorithms, called
HogWild! [22], In their paper, Niu et al. proved that the
HogWild! approach will converge in optimal ratio, which is
similar to its original algorithm, given a sparse dataset, although
the HogWild! approach allows overwrites on decision variables
for the SGD optimization due to not using lock mechanism
in shared memory parallelism. Since most of the real network
graphs are usually sparse, in this paper, we proposed a parallel
flow-based community detection algorithm in terms of the map
equation [11] metric, by applying lock-free scheme as similar
as HogWild! for SGD algorithms.

VI. CONCLUSION AND FUTURE WORK

We proposed a parallel flow-based community detection
algorithm, called RelaxMap. Due to the original algorithm’s



sequential and dependent nature, it is difficult to implement an
efficient parallel algorithm which follows the sequential prop-
erties as exactly same as the original algorithm. The proposed
algorithm applies lock-free parallel mechanism in searching
new modules of vertices, for achieving better efficiency based
on the sparsity assumption which is frequently occurred in
real-world networks.

Although the RelaxMap algorithm allows to identify new
module of a vertex based on stale information, we believe that
it might happen rarely and will not affect the convergence ratio
of the algorithm, when the given network is sparse. Empirically,
we show the convergence ratio of the RelaxMap algorithm is
as fast as the original sequential algorithm.

In addition to the fast convergence ratio, our proposed
parallel algorithm provides high-quality outputs which is
compatible with outputs of the sequential algorithm, and
achieves acceptable efficiency of the parallel executions on
both experimental environments.

For future work, we think there is a room for the improve-
ment of the parallel efficiency by considering fine-grained
locking structures to reduce lock contention. Also, extending
the proposed RelaxMap parallel algorithm to the distributed-
memory environment would be a very interesting work which
is essential for finding community structure of much more large
scale of networks by using hundreds or thousands of parallel
units.
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